160 lines
6.1 KiB
Java
160 lines
6.1 KiB
Java
/*This Java program,to find the single source shortest path in directed acyclic graph by Dijkstra’s algorithm.Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.*/
|
||
import java.util.InputMismatchException;
|
||
import java.util.Scanner;
|
||
|
||
public class DijkstraShortestPath
|
||
{
|
||
private boolean settled[];
|
||
private boolean unsettled[];
|
||
private int distances[];
|
||
private int adjacencymatrix[][];
|
||
private int numberofvertices;
|
||
|
||
public DijkstraShortestPath(int numberofvertices)
|
||
{
|
||
this.numberofvertices = numberofvertices;
|
||
this.settled = new boolean[numberofvertices + 1];
|
||
this.unsettled = new boolean[numberofvertices + 1];
|
||
this.distances = new int[numberofvertices + 1];
|
||
this.adjacencymatrix = new int[numberofvertices + 1][numberofvertices + 1];
|
||
}
|
||
|
||
public void dijkstraShortestPath(int source, int adjacencymatrix[][])
|
||
{
|
||
int evaluationnode;
|
||
for (int vertex = 1; vertex <= numberofvertices; vertex++)
|
||
{
|
||
distances[vertex] = Integer.MAX_VALUE;
|
||
}
|
||
for (int sourcevertex = 1; sourcevertex <= numberofvertices; sourcevertex++)
|
||
{
|
||
for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++)
|
||
{
|
||
this.adjacencymatrix[sourcevertex][destinationvertex]
|
||
= adjacencymatrix[sourcevertex][destinationvertex];
|
||
}
|
||
}
|
||
unsettled[source] = true;
|
||
distances[source] = 0;
|
||
while (getUnsettledCount(unsettled) != 0)
|
||
{
|
||
evaluationnode = getNodeWithMinimumDistanceFromUnsettled(unsettled);
|
||
unsettled[evaluationnode] = false;
|
||
settled[evaluationnode] = true;
|
||
evaluateNeighbours(evaluationnode);
|
||
}
|
||
}
|
||
|
||
public int getUnsettledCount(boolean unsettled[])
|
||
{
|
||
int count = 0;
|
||
for (int vertex = 1; vertex <= numberofvertices; vertex++)
|
||
{
|
||
if (unsettled[vertex] == true)
|
||
{
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
public int getNodeWithMinimumDistanceFromUnsettled(boolean unsettled[])
|
||
{
|
||
int min = Integer.MAX_VALUE;
|
||
int node = 0;
|
||
for (int vertex = 1; vertex <= numberofvertices; vertex++)
|
||
{
|
||
if (unsettled[vertex] == true && distances[vertex] < min)
|
||
{
|
||
node = vertex;
|
||
min = distances[vertex];
|
||
}
|
||
}
|
||
return node;
|
||
}
|
||
|
||
public void evaluateNeighbours(int evaluationNode)
|
||
{
|
||
int edgeDistance = -1;
|
||
int newDistance = -1;
|
||
for (int destinationNode = 1; destinationNode <= numberofvertices; destinationNode++)
|
||
{
|
||
if (settled[destinationNode] == false)
|
||
{
|
||
if (adjacencymatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
|
||
{
|
||
edgeDistance = adjacencymatrix[evaluationNode][destinationNode];
|
||
newDistance = distances[evaluationNode] + edgeDistance;
|
||
if (newDistance < distances[destinationNode])
|
||
{
|
||
distances[destinationNode] = newDistance;
|
||
}
|
||
unsettled[destinationNode] = true;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
public static void main(String... arg)
|
||
{
|
||
int adjacency_matrix[][];
|
||
int number_of_vertices;
|
||
int source = 0;
|
||
Scanner scan = new Scanner(System.in);
|
||
try
|
||
{
|
||
System.out.println("Enter the number of vertices");
|
||
number_of_vertices = scan.nextInt();
|
||
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
|
||
System.out.println("Enter the Weighted Matrix for the graph");
|
||
for (int i = 1; i <= number_of_vertices; i++)
|
||
{
|
||
for (int j = 1; j <= number_of_vertices; j++)
|
||
{
|
||
adjacency_matrix[i][j] = scan.nextInt();
|
||
if (i == j)
|
||
{
|
||
adjacency_matrix[i][j] = 0;
|
||
continue;
|
||
}
|
||
if (adjacency_matrix[i][j] == 0)
|
||
{
|
||
adjacency_matrix[i][j] = Integer.MAX_VALUE;
|
||
}
|
||
}
|
||
}
|
||
System.out.println("Enter the source ");
|
||
source = scan.nextInt();
|
||
DijkstraShortestPath dijkstrasAlgorithm = new DijkstraShortestPath(number_of_vertices);
|
||
dijkstrasAlgorithm.dijkstraShortestPath(source, adjacency_matrix);
|
||
System.out.println("The Shorted Path to all nodes are ");
|
||
for (int i = 1; i <= dijkstrasAlgorithm.distances.length - 1; i++)
|
||
{
|
||
System.out.println(source + " to " + i + " is "+ dijkstrasAlgorithm.distances[i]);
|
||
}
|
||
}
|
||
catch (InputMismatchException inputMismatch)
|
||
{
|
||
System.out.println("Wrong Input Format");
|
||
}
|
||
scan.close();
|
||
}
|
||
}
|
||
|
||
/*
|
||
Enter the number of vertices
|
||
5
|
||
Enter the Weighted Matrix for the graph
|
||
0 9 6 5 3
|
||
0 0 0 0 0
|
||
0 2 0 4 0
|
||
0 0 0 0 0
|
||
0 0 0 0 0
|
||
Enter the source
|
||
1
|
||
The Shorted Path to all nodes are
|
||
1 to 1 is 0
|
||
1 to 2 is 8
|
||
1 to 3 is 6
|
||
1 to 4 is 5
|
||
1 to 5 is 3 |