programming-examples/java/Data_Structures/RabinKarp.java
2019-11-15 12:59:38 +01:00

139 lines
4.2 KiB
Java

/***************************************************************
* Compilation: javac RabinKarp.java
* Execution: java RabinKarp pat txt
*
* Reads in two strings, the pattern and the input text, and
* searches for the pattern in the input text using the
* Las Vegas version of the Rabin-Karp algorithm.
*
* % java RabinKarp abracadabra abacadabrabracabracadabrabrabracad
* pattern: abracadabra
* text: abacadabrabracabracadabrabrabracad
* match: abracadabra
*
* % java RabinKarp rab abacadabrabracabracadabrabrabracad
* pattern: rab
* text: abacadabrabracabracadabrabrabracad
* match: rab
*
* % java RabinKarp bcara abacadabrabracabracadabrabrabracad
* pattern: bcara
* text: abacadabrabracabracadabrabrabracad
*
* % java RabinKarp rabrabracad abacadabrabracabracadabrabrabracad
* text: abacadabrabracabracadabrabrabracad
* pattern: rabrabracad
*
* % java RabinKarp abacad abacadabrabracabracadabrabrabracad
* text: abacadabrabracabracadabrabrabracad
* pattern: abacad
*
***************************************************************/
import java.math.BigInteger;
import java.util.Random;
import edu.princeton.cs.introcs.StdOut;
public class RabinKarp {
private String pat; // the pattern // needed only for Las Vegas
private long patHash; // pattern hash value
private int M; // pattern length
private long Q; // a large prime, small enough to avoid long overflow
private int R; // radix
private long RM; // R^(M-1) % Q
public RabinKarp(int R, char[] pattern) {
throw new UnsupportedOperationException("Operation not supported yet");
}
public RabinKarp(String pat) {
this.pat = pat; // save pattern (needed only for Las Vegas)
R = 256;
M = pat.length();
Q = longRandomPrime();
// precompute R^(M-1) % Q for use in removing leading digit
RM = 1;
for (int i = 1; i <= M-1; i++)
RM = (R * RM) % Q;
patHash = hash(pat, M);
}
// Compute hash for key[0..M-1].
private long hash(String key, int M) {
long h = 0;
for (int j = 0; j < M; j++)
h = (R * h + key.charAt(j)) % Q;
return h;
}
// Las Vegas version: does pat[] match txt[i..i-M+1] ?
private boolean check(String txt, int i) {
for (int j = 0; j < M; j++)
if (pat.charAt(j) != txt.charAt(i + j))
return false;
return true;
}
// Monte Carlo version: always return true
private boolean check(int i) {
return true;
}
// check for exact match
public int search(String txt) {
int N = txt.length();
if (N < M) return N;
long txtHash = hash(txt, M);
// check for match at offset 0
if ((patHash == txtHash) && check(txt, 0))
return 0;
// check for hash match; if hash match, check for exact match
for (int i = M; i < N; i++) {
// Remove leading digit, add trailing digit, check for match.
txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
txtHash = (txtHash*R + txt.charAt(i)) % Q;
// match
int offset = i - M + 1;
if ((patHash == txtHash) && check(txt, offset))
return offset;
}
// no match
return N;
}
// a random 31-bit prime
private static long longRandomPrime() {
BigInteger prime = BigInteger.probablePrime(31, new Random());
return prime.longValue();
}
// test client
public static void main(String[] args) {
String pat = args[0];
String txt = args[1];
char[] pattern = pat.toCharArray();
char[] text = txt.toCharArray();
RabinKarp searcher = new RabinKarp(pat);
int offset = searcher.search(txt);
// print results
StdOut.println("text: " + txt);
// from brute force search method 1
StdOut.print("pattern: ");
for (int i = 0; i < offset; i++)
StdOut.print(" ");
StdOut.println(pat);
}
}