277 lines
8.5 KiB
Java
277 lines
8.5 KiB
Java
|
|
|
|
/*************************************************************************
|
|
* Compilation: javac MaxPQ.java
|
|
* Execution: java MaxPQ < input.txt
|
|
*
|
|
* Generic max priority queue implementation with a binary heap.
|
|
* Can be used with a comparator instead of the natural order,
|
|
* but the generic Key type must still be Comparable.
|
|
*
|
|
* % java MaxPQ < tinyPQ.txt
|
|
* Q X P (6 left on pq)
|
|
*
|
|
* We use a one-based array to simplify parent and child calculations.
|
|
*
|
|
* Can be optimized by replacing full exchanges with half exchanges
|
|
* (ala insertion sort).
|
|
*
|
|
*************************************************************************/
|
|
|
|
import java.util.Comparator;
|
|
import java.util.Iterator;
|
|
import java.util.NoSuchElementException;
|
|
|
|
import edu.princeton.cs.introcs.StdIn;
|
|
import edu.princeton.cs.introcs.StdOut;
|
|
|
|
/**
|
|
* The MaxPQ class represents a priority queue of generic keys.
|
|
* It supports the usual insert and delete-the-maximum
|
|
* operations, along with methods for peeking at the maximum key,
|
|
* testing if the priority queue is empty, and iterating through
|
|
* the keys.
|
|
*
|
|
* This implementation uses a binary heap.
|
|
* The insert and delete-the-maximum operations take
|
|
* logarithmic amortized time.
|
|
* The max , size , and is-empty operations take constant time.
|
|
* Construction takes time proportional to the specified capacity or the number of
|
|
* items used to initialize the data structure.
|
|
*
|
|
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/24pq">Section 2.4</a> of
|
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
|
*
|
|
* @author Robert Sedgewick
|
|
* @author Kevin Wayne
|
|
*/
|
|
|
|
public class MaxPQ<Key> implements Iterable<Key> {
|
|
private Key[] pq; // store items at indices 1 to N
|
|
private int N; // number of items on priority queue
|
|
private Comparator<Key> comparator; // optional Comparator
|
|
|
|
/**
|
|
* Initializes an empty priority queue with the given initial capacity.
|
|
* @param initCapacity the initial capacity of the priority queue
|
|
*/
|
|
public MaxPQ(int initCapacity) {
|
|
pq = (Key[]) new Object[initCapacity + 1];
|
|
N = 0;
|
|
}
|
|
|
|
/**
|
|
* Initializes an empty priority queue.
|
|
*/
|
|
public MaxPQ() {
|
|
this(1);
|
|
}
|
|
|
|
/**
|
|
* Initializes an empty priority queue with the given initial capacity,
|
|
* using the given comparator.
|
|
* @param initCapacity the initial capacity of the priority queue
|
|
* @param comparator the order in which to compare the keys
|
|
*/
|
|
public MaxPQ(int initCapacity, Comparator<Key> comparator) {
|
|
this.comparator = comparator;
|
|
pq = (Key[]) new Object[initCapacity + 1];
|
|
N = 0;
|
|
}
|
|
|
|
/**
|
|
* Initializes an empty priority queue using the given comparator.
|
|
* @param comparator the order in which to compare the keys
|
|
*/
|
|
public MaxPQ(Comparator<Key> comparator) {
|
|
this(1, comparator);
|
|
}
|
|
|
|
/**
|
|
* Initializes a priority queue from the array of keys.
|
|
* Takes time proportional to the number of keys, using sink-based heap construction.
|
|
* @param keys the array of keys
|
|
*/
|
|
public MaxPQ(Key[] keys) {
|
|
N = keys.length;
|
|
pq = (Key[]) new Object[keys.length + 1];
|
|
for (int i = 0; i < N; i++)
|
|
pq[i+1] = keys[i];
|
|
for (int k = N/2; k >= 1; k--)
|
|
sink(k);
|
|
assert isMaxHeap();
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Is the priority queue empty?
|
|
* @return true if the priority queue is empty; false otherwise
|
|
*/
|
|
public boolean isEmpty() {
|
|
return N == 0;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of keys on the priority queue.
|
|
* @return the number of keys on the priority queue
|
|
*/
|
|
public int size() {
|
|
return N;
|
|
}
|
|
|
|
/**
|
|
* Returns a largest key on the priority queue.
|
|
* @return a largest key on the priority queue
|
|
* @throws java.util.NoSuchElementException if the priority queue is empty
|
|
*/
|
|
public Key max() {
|
|
if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
|
|
return pq[1];
|
|
}
|
|
|
|
// helper function to double the size of the heap array
|
|
private void resize(int capacity) {
|
|
assert capacity > N;
|
|
Key[] temp = (Key[]) new Object[capacity];
|
|
for (int i = 1; i <= N; i++) temp[i] = pq[i];
|
|
pq = temp;
|
|
}
|
|
|
|
|
|
/**
|
|
* Adds a new key to the priority queue.
|
|
* @param x the new key to add to the priority queue
|
|
*/
|
|
public void insert(Key x) {
|
|
|
|
// double size of array if necessary
|
|
if (N >= pq.length - 1) resize(2 * pq.length);
|
|
|
|
// add x, and percolate it up to maintain heap invariant
|
|
pq[++N] = x;
|
|
swim(N);
|
|
assert isMaxHeap();
|
|
}
|
|
|
|
/**
|
|
* Removes and returns a largest key on the priority queue.
|
|
* @return a largest key on the priority queue
|
|
* @throws java.util.NoSuchElementException if priority queue is empty.
|
|
*/
|
|
public Key delMax() {
|
|
if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
|
|
Key max = pq[1];
|
|
exch(1, N--);
|
|
sink(1);
|
|
pq[N+1] = null; // to avoid loiterig and help with garbage collection
|
|
if ((N > 0) && (N == (pq.length - 1) / 4)) resize(pq.length / 2);
|
|
assert isMaxHeap();
|
|
return max;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* Helper functions to restore the heap invariant.
|
|
**********************************************************************/
|
|
|
|
private void swim(int k) {
|
|
while (k > 1 && less(k/2, k)) {
|
|
exch(k, k/2);
|
|
k = k/2;
|
|
}
|
|
}
|
|
|
|
private void sink(int k) {
|
|
while (2*k <= N) {
|
|
int j = 2*k;
|
|
if (j < N && less(j, j+1)) j++;
|
|
if (!less(k, j)) break;
|
|
exch(k, j);
|
|
k = j;
|
|
}
|
|
}
|
|
|
|
/***********************************************************************
|
|
* Helper functions for compares and swaps.
|
|
**********************************************************************/
|
|
private boolean less(int i, int j) {
|
|
if (comparator == null) {
|
|
return ((Comparable<Key>) pq[i]).compareTo(pq[j]) < 0;
|
|
}
|
|
else {
|
|
return comparator.compare(pq[i], pq[j]) < 0;
|
|
}
|
|
}
|
|
|
|
private void exch(int i, int j) {
|
|
Key swap = pq[i];
|
|
pq[i] = pq[j];
|
|
pq[j] = swap;
|
|
}
|
|
|
|
// is pq[1..N] a max heap?
|
|
private boolean isMaxHeap() {
|
|
return isMaxHeap(1);
|
|
}
|
|
|
|
// is subtree of pq[1..N] rooted at k a max heap?
|
|
private boolean isMaxHeap(int k) {
|
|
if (k > N) return true;
|
|
int left = 2*k, right = 2*k + 1;
|
|
if (left <= N && less(k, left)) return false;
|
|
if (right <= N && less(k, right)) return false;
|
|
return isMaxHeap(left) && isMaxHeap(right);
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* Iterator
|
|
**********************************************************************/
|
|
|
|
/**
|
|
* Returns an iterator that iterates over the keys on the priority queue
|
|
* in descending order.
|
|
* The iterator doesn't implement remove() since it's optional.
|
|
* @return an iterator that iterates over the keys in descending order
|
|
*/
|
|
public Iterator<Key> iterator() { return new HeapIterator(); }
|
|
|
|
private class HeapIterator implements Iterator<Key> {
|
|
|
|
// create a new pq
|
|
private MaxPQ<Key> copy;
|
|
|
|
// add all items to copy of heap
|
|
// takes linear time since already in heap order so no keys move
|
|
public HeapIterator() {
|
|
if (comparator == null) copy = new MaxPQ<Key>(size());
|
|
else copy = new MaxPQ<Key>(size(), comparator);
|
|
for (int i = 1; i <= N; i++)
|
|
copy.insert(pq[i]);
|
|
}
|
|
|
|
public boolean hasNext() { return !copy.isEmpty(); }
|
|
public void remove() { throw new UnsupportedOperationException(); }
|
|
|
|
public Key next() {
|
|
if (!hasNext()) throw new NoSuchElementException();
|
|
return copy.delMax();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Unit tests the MaxPQ data type.
|
|
*/
|
|
public static void main(String[] args) {
|
|
MaxPQ<String> pq = new MaxPQ<String>();
|
|
while (!StdIn.isEmpty()) {
|
|
String item = StdIn.readString();
|
|
if (!item.equals("-")) pq.insert(item);
|
|
else if (!pq.isEmpty()) StdOut.print(pq.delMax() + " ");
|
|
}
|
|
StdOut.println("(" + pq.size() + " left on pq)");
|
|
}
|
|
|
|
}
|