71 lines
1.7 KiB
Java
71 lines
1.7 KiB
Java
import java.util.*;
|
||
import java.util.stream.Stream;
|
||
|
||
// https://en.wikipedia.org/wiki/Hopcroft–Karp_algorithm in (E * sqrt(V))
|
||
public class MaxMatchingHopcroftKarp {
|
||
|
||
public static int maxMatching(List<Integer>[] graph, int n2) {
|
||
int n1 = graph.length;
|
||
int[] dist = new int[n1];
|
||
int[] matching = new int[n2];
|
||
Arrays.fill(matching, -1);
|
||
boolean[] used = new boolean[n1];
|
||
for (int res = 0; ; ) {
|
||
bfs(graph, used, matching, dist);
|
||
boolean[] vis = new boolean[n1];
|
||
int f = 0;
|
||
for (int u = 0; u < n1; ++u)
|
||
if (!used[u] && dfs(graph, vis, used, matching, dist, u))
|
||
++f;
|
||
if (f == 0)
|
||
return res;
|
||
res += f;
|
||
}
|
||
}
|
||
|
||
static void bfs(List<Integer>[] graph, boolean[] used, int[] matching, int[] dist) {
|
||
Arrays.fill(dist, -1);
|
||
int n1 = graph.length;
|
||
int[] Q = new int[graph.length];
|
||
int sizeQ = 0;
|
||
for (int u = 0; u < n1; ++u) {
|
||
if (!used[u]) {
|
||
Q[sizeQ++] = u;
|
||
dist[u] = 0;
|
||
}
|
||
}
|
||
for (int i = 0; i < sizeQ; i++) {
|
||
int u1 = Q[i];
|
||
for (int v : graph[u1]) {
|
||
int u2 = matching[v];
|
||
if (u2 >= 0 && dist[u2] < 0) {
|
||
dist[u2] = dist[u1] + 1;
|
||
Q[sizeQ++] = u2;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static boolean dfs(List<Integer>[] graph, boolean[] vis, boolean[] used, int[] matching, int[] dist, int u1) {
|
||
vis[u1] = true;
|
||
for (int v : graph[u1]) {
|
||
int u2 = matching[v];
|
||
if (u2 < 0 || !vis[u2] && dist[u2] == dist[u1] + 1 && dfs(graph, vis, used, matching, dist, u2)) {
|
||
matching[v] = u1;
|
||
used[u1] = true;
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// Usage example
|
||
public static void main(String[] args) {
|
||
List<Integer>[] graph = Stream.generate(ArrayList::new).limit(3).toArray(List[]::new);
|
||
graph[0].add(0);
|
||
graph[0].add(1);
|
||
graph[1].add(1);
|
||
System.out.println(2 == maxMatching(graph, 2));
|
||
}
|
||
}
|