191 lines
6.1 KiB
Java
191 lines
6.1 KiB
Java
|
|
|
|
import edu.princeton.cs.introcs.StdOut;
|
|
import edu.princeton.cs.introcs.StdRandom;
|
|
|
|
/*************************************************************************
|
|
* Compilation: javac EdgeWeightedDirectedCycle.java
|
|
* Execution: java EdgeWeightedDirectedCycle V E F
|
|
* Dependencies: EdgeWeightedDigraph.java DirectedEdge Stack.java
|
|
*
|
|
* Finds a directed cycle in an edge-weighted digraph.
|
|
* Runs in O(E + V) time.
|
|
*
|
|
*
|
|
*************************************************************************/
|
|
|
|
/**
|
|
* The EdgeWeightedDirectedCycle class represents a data type for
|
|
* determining whether an edge-weighted digraph has a directed cycle.
|
|
* The hasCycle operation determines whether the edge-weighted
|
|
* digraph has a directed cycle and, if so, the cycle operation
|
|
* returns one.
|
|
*
|
|
* This implementation uses depth-first search.
|
|
* The constructor takes time proportional to V + E
|
|
* (in the worst case),
|
|
* where V is the number of vertices and E is the number of edges.
|
|
* Afterwards, the hasCycle operation takes constant time;
|
|
* the cycle operation takes time proportional
|
|
* to the length of the cycle.
|
|
*
|
|
* See {@link Topological} to compute a topological order if the edge-weighted
|
|
* digraph is acyclic.
|
|
*
|
|
* For additional documentation, see <a href="/algs4/44sp">Section 4.4</a> of
|
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
|
*
|
|
* @author Robert Sedgewick
|
|
* @author Kevin Wayne
|
|
*/
|
|
public class EdgeWeightedDirectedCycle {
|
|
private boolean[] marked; // marked[v] = has vertex v been marked?
|
|
private DirectedEdge[] edgeTo; // edgeTo[v] = previous edge on path to v
|
|
private boolean[] onStack; // onStack[v] = is vertex on the stack?
|
|
private Stack<DirectedEdge> cycle; // directed cycle (or null if no such cycle)
|
|
|
|
/**
|
|
* Determines whether the edge-weighted digraph G has a directed cycle and,
|
|
* if so, finds such a cycle.
|
|
* @param G the edge-weighted digraph
|
|
*/
|
|
public EdgeWeightedDirectedCycle(EdgeWeightedDigraph G) {
|
|
marked = new boolean[G.V()];
|
|
onStack = new boolean[G.V()];
|
|
edgeTo = new DirectedEdge[G.V()];
|
|
for (int v = 0; v < G.V(); v++)
|
|
if (!marked[v]) dfs(G, v);
|
|
|
|
// check that digraph has a cycle
|
|
assert check(G);
|
|
}
|
|
|
|
// check that algorithm computes either the topological order or finds a directed cycle
|
|
private void dfs(EdgeWeightedDigraph G, int v) {
|
|
onStack[v] = true;
|
|
marked[v] = true;
|
|
for (DirectedEdge e : G.adj(v)) {
|
|
int w = e.to();
|
|
|
|
// short circuit if directed cycle found
|
|
if (cycle != null) return;
|
|
|
|
//found new vertex, so recur
|
|
else if (!marked[w]) {
|
|
edgeTo[w] = e;
|
|
dfs(G, w);
|
|
}
|
|
|
|
// trace back directed cycle
|
|
else if (onStack[w]) {
|
|
cycle = new Stack<DirectedEdge>();
|
|
while (e.from() != w) {
|
|
cycle.push(e);
|
|
e = edgeTo[e.from()];
|
|
}
|
|
cycle.push(e);
|
|
}
|
|
}
|
|
|
|
onStack[v] = false;
|
|
}
|
|
|
|
/**
|
|
* Does the edge-weighted digraph have a directed cycle?
|
|
* @return true if the edge-weighted digraph has a directed cycle,
|
|
* false otherwise
|
|
*/
|
|
public boolean hasCycle() {
|
|
return cycle != null;
|
|
}
|
|
|
|
/**
|
|
* Returns a directed cycle if the edge-weighted digraph has a directed cycle,
|
|
* and null otherwise.
|
|
* @return a directed cycle (as an iterable) if the edge-weighted digraph
|
|
* has a directed cycle, and null otherwise
|
|
*/
|
|
public Iterable<DirectedEdge> cycle() {
|
|
return cycle;
|
|
}
|
|
|
|
|
|
// certify that digraph is either acyclic or has a directed cycle
|
|
private boolean check(EdgeWeightedDigraph G) {
|
|
|
|
// edge-weighted digraph is cyclic
|
|
if (hasCycle()) {
|
|
// verify cycle
|
|
DirectedEdge first = null, last = null;
|
|
for (DirectedEdge e : cycle()) {
|
|
if (first == null) first = e;
|
|
if (last != null) {
|
|
if (last.to() != e.from()) {
|
|
System.err.printf("cycle edges %s and %s not incident\n", last, e);
|
|
return false;
|
|
}
|
|
}
|
|
last = e;
|
|
}
|
|
|
|
if (last.to() != first.from()) {
|
|
System.err.printf("cycle edges %s and %s not incident\n", last, first);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Unit tests the EdgeWeightedDirectedCycle data type.
|
|
*/
|
|
public static void main(String[] args) {
|
|
|
|
// create random DAG with V vertices and E edges; then add F random edges
|
|
int V = Integer.parseInt(args[0]);
|
|
int E = Integer.parseInt(args[1]);
|
|
int F = Integer.parseInt(args[2]);
|
|
EdgeWeightedDigraph G = new EdgeWeightedDigraph(V);
|
|
int[] vertices = new int[V];
|
|
for (int i = 0; i < V; i++) vertices[i] = i;
|
|
StdRandom.shuffle(vertices);
|
|
for (int i = 0; i < E; i++) {
|
|
int v, w;
|
|
do {
|
|
v = StdRandom.uniform(V);
|
|
w = StdRandom.uniform(V);
|
|
} while (v >= w);
|
|
double weight = Math.random();
|
|
G.addEdge(new DirectedEdge(v, w, weight));
|
|
}
|
|
|
|
// add F extra edges
|
|
for (int i = 0; i < F; i++) {
|
|
int v = (int) (Math.random() * V);
|
|
int w = (int) (Math.random() * V);
|
|
double weight = Math.random();
|
|
G.addEdge(new DirectedEdge(v, w, weight));
|
|
}
|
|
|
|
StdOut.println(G);
|
|
|
|
// find a directed cycle
|
|
EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(G);
|
|
if (finder.hasCycle()) {
|
|
StdOut.print("Cycle: ");
|
|
for (DirectedEdge e : finder.cycle()) {
|
|
StdOut.print(e + " ");
|
|
}
|
|
StdOut.println();
|
|
}
|
|
|
|
// or give topologial sort
|
|
else {
|
|
StdOut.println("No directed cycle");
|
|
}
|
|
}
|
|
|
|
}
|