You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

53 lines
2.1 KiB
Java

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

package com.jwetherell.algorithms.mathematics;
import com.jwetherell.algorithms.numbers.Complex;
/**
* A fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT) of a sequence, or its inverse.
* Fourier analysis converts a signal from its original domain (often time or space) to a representation in the frequency
* domain and vice versa. An FFT rapidly computes such transformations by factorizing the DFT matrix into a product of
* sparse (mostly zero) factors.
* <p>
* http://en.wikipedia.org/wiki/Fast_Fourier_transform
* <br>
* @author Mateusz Cianciara <e.cianciara@gmail.com>
* @author Justin Wetherell <phishman3579@gmail.com>
*/
public class FastFourierTransform {
private FastFourierTransform() { }
/**
* The CooleyTukey algorithm, named after J.W. Cooley and John Tukey, is the most common fast Fourier transform
* (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size N = N1N2
* in terms of N1 smaller DFTs of sizes N2, recursively, to reduce the computation time to O(N log N) for highly
* composite N (smooth numbers).
* <p>
* http://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
* <br>
* @param coefficients size must be power of 2
*/
public static void cooleyTukeyFFT(Complex[] coefficients) {
final int size = coefficients.length;
if (size <= 1)
return;
final Complex[] even = new Complex[size / 2];
final Complex[] odd = new Complex[size / 2];
for (int i = 0; i < size; i++) {
if (i % 2 == 0) {
even[i / 2] = coefficients[i];
} else {
odd[(i - 1) / 2] = coefficients[i];
}
}
cooleyTukeyFFT(even);
cooleyTukeyFFT(odd);
for (int k = 0; k < size / 2; k++) {
Complex t = Complex.polar(1.0, -2 * Math.PI * k / size).multiply(odd[k]);
coefficients[k] = even[k].add(t);
coefficients[k + size / 2] = even[k].sub(t);
}
}
}