/* This is a Java Program to Implement Strassen Matrix Multiplication Algorithm. This is a program to compute product of two matrices using Strassen Multiplication algorithm. Here the dimensions of matrices must be a power of 2. */ /** ** Java Program to Implement Strassen Algorithm **/ import java.util.Scanner; /** Class Strassen **/ public class Strassen { /** Function to multiply matrices **/ public int[][] multiply(int[][] A, int[][] B) { int n = A.length; int[][] R = new int[n][n]; /** base case **/ if (n == 1) R[0][0] = A[0][0] * B[0][0]; else { int[][] A11 = new int[n/2][n/2]; int[][] A12 = new int[n/2][n/2]; int[][] A21 = new int[n/2][n/2]; int[][] A22 = new int[n/2][n/2]; int[][] B11 = new int[n/2][n/2]; int[][] B12 = new int[n/2][n/2]; int[][] B21 = new int[n/2][n/2]; int[][] B22 = new int[n/2][n/2]; /** Dividing matrix A into 4 halves **/ split(A, A11, 0, 0); split(A, A12, 0, n/2); split(A, A21, n/2, 0); split(A, A22, n/2, n/2); /** Dividing matrix B into 4 halves **/ split(B, B11, 0, 0); split(B, B12, 0, n/2); split(B, B21, n/2, 0); split(B, B22, n/2, n/2); /* M1 = (A11 + A22)(B11 + B22) M2 = (A21 + A22) B11 M3 = A11 (B12 - B22) M4 = A22 (B21 - B11) M5 = (A11 + A12) B22 M6 = (A21 - A11) (B11 + B12) M7 = (A12 - A22) (B21 + B22) */ int [][] M1 = multiply(add(A11, A22), add(B11, B22)); int [][] M2 = multiply(add(A21, A22), B11); int [][] M3 = multiply(A11, sub(B12, B22)); int [][] M4 = multiply(A22, sub(B21, B11)); int [][] M5 = multiply(add(A11, A12), B22); int [][] M6 = multiply(sub(A21, A11), add(B11, B12)); int [][] M7 = multiply(sub(A12, A22), add(B21, B22)); /* C11 = M1 + M4 - M5 + M7 C12 = M3 + M5 C21 = M2 + M4 C22 = M1 - M2 + M3 + M6 */ int [][] C11 = add(sub(add(M1, M4), M5), M7); int [][] C12 = add(M3, M5); int [][] C21 = add(M2, M4); int [][] C22 = add(sub(add(M1, M3), M2), M6); /** join 4 halves into one result matrix **/ join(C11, R, 0, 0); join(C12, R, 0, n/2); join(C21, R, n/2, 0); join(C22, R, n/2, n/2); } /** return result **/ return R; } /** Funtion to sub two matrices **/ public int[][] sub(int[][] A, int[][] B) { int n = A.length; int[][] C = new int[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) C[i][j] = A[i][j] - B[i][j]; return C; } /** Funtion to add two matrices **/ public int[][] add(int[][] A, int[][] B) { int n = A.length; int[][] C = new int[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) C[i][j] = A[i][j] + B[i][j]; return C; } /** Funtion to split parent matrix into child matrices **/ public void split(int[][] P, int[][] C, int iB, int jB) { for(int i1 = 0, i2 = iB; i1 < C.length; i1++, i2++) for(int j1 = 0, j2 = jB; j1 < C.length; j1++, j2++) C[i1][j1] = P[i2][j2]; } /** Funtion to join child matrices intp parent matrix **/ public void join(int[][] C, int[][] P, int iB, int jB) { for(int i1 = 0, i2 = iB; i1 < C.length; i1++, i2++) for(int j1 = 0, j2 = jB; j1 < C.length; j1++, j2++) P[i2][j2] = C[i1][j1]; } /** Main function **/ public static void main (String[] args) { Scanner scan = new Scanner(System.in); System.out.println("Strassen Multiplication Algorithm Test\n"); /** Make an object of Strassen class **/ Strassen s = new Strassen(); System.out.println("Enter order n :"); int N = scan.nextInt(); /** Accept two 2d matrices **/ System.out.println("Enter N order matrix 1\n"); int[][] A = new int[N][N]; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) A[i][j] = scan.nextInt(); System.out.println("Enter N order matrix 2\n"); int[][] B = new int[N][N]; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) B[i][j] = scan.nextInt(); int[][] C = s.multiply(A, B); System.out.println("\nProduct of matrices A and B : "); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) System.out.print(C[i][j] +" "); System.out.println(); } } } /* Enter order n : 4 Enter N order matrix 1 2 3 1 6 4 0 0 2 4 2 0 1 0 3 5 2 Enter N order matrix 2 3 0 4 3 1 2 0 2 0 3 1 4 5 1 3 2 Product of matrices A and B : 39 15 27 28 22 2 22 16 19 5 19 18 13 23 11 30