/*This is a Java Program to perform Double Order traversal over binary tree. Recurse through: 1. Visit root of (sub)tree. 2. Visit left sub-tree. 3. Revisit root of (sub)tree. 4. Visit right sub-tree.*/ //This is a java program to implement doubleorder traversal of the Binary Search Tree import java.util.Scanner; class BinarySearchTreeNodes { BinarySearchTreeNodes left, right; int data; public BinarySearchTreeNodes() { left = null; right = null; data = 0; } public BinarySearchTreeNodes(int n) { left = null; right = null; data = n; } public void setLeft(BinarySearchTreeNodes n) { left = n; } public void setRight(BinarySearchTreeNodes n) { right = n; } public BinarySearchTreeNodes getLeft() { return left; } public BinarySearchTreeNodes getRight() { return right; } public void setData(int d) { data = d; } public int getData() { return data; } } class BinarySearchTree { private BinarySearchTreeNodes root; public BinarySearchTree() { root = null; } public boolean isEmpty() { return root == null; } public void insert(int data) { root = insert(root, data); } private BinarySearchTreeNodes insert(BinarySearchTreeNodes node, int data) { if (node == null) node = new BinarySearchTreeNodes(data); else { if (data <= node.getData()) node.left = insert(node.left, data); else node.right = insert(node.right, data); } return node; } public void doubleorder() { doubleorder(root); } private void doubleorder(BinarySearchTreeNodes r) { if(r != null) { System.out.print(r.getData() + " "); doubleorder(r.getLeft()); System.out.print(r.getData() + " "); doubleorder(r.getRight()); } } } public class Doubleorder_Traversal { public static void main(String[] args) { Scanner scan = new Scanner(System.in); BinarySearchTree bst = new BinarySearchTree(); System.out.println("Enter the first 10 elements of the tree\n"); int N = 10; for (int i = 0; i < N; i++) bst.insert(scan.nextInt()); System.out.print("\nDouble-order : "); bst.doubleorder(); scan.close(); } } /* Enter the first 10 elements of the tree 12 10 11 03 15 19 02 01 04 70 Double-order : 12 10 3 2 1 1 2 3 4 4 10 11 11 12 15 15 19 19 70 70