/*This Java program to find mst using kruskal’s algorithm.Kruskal’s algorithm is a greedy algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized*/ import java.util.Collections; import java.util.Comparator; import java.util.LinkedList; import java.util.List; import java.util.Scanner; import java.util.Stack; public class KruskalAlgorithm { private List edges; private int numberOfVertices; public static final int MAX_VALUE = 999; private int visited[]; private int spanning_tree[][]; public KruskalAlgorithm(int numberOfVertices) { this.numberOfVertices = numberOfVertices; edges = new LinkedList(); visited = new int[this.numberOfVertices + 1]; spanning_tree = new int[numberOfVertices + 1][numberOfVertices + 1]; } public void kruskalAlgorithm(int adjacencyMatrix[][]) { boolean finished = false; for (int source = 1; source <= numberOfVertices; source++) { for (int destination = 1; destination <= numberOfVertices; destination++) { if (adjacencyMatrix[source][destination] != MAX_VALUE && source != destination) { Edge edge = new Edge(); edge.sourcevertex = source; edge.destinationvertex = destination; edge.weight = adjacencyMatrix[source][destination]; adjacencyMatrix[destination][source] = MAX_VALUE; edges.add(edge); } } } Collections.sort(edges, new EdgeComparator()); CheckCycle checkCycle = new CheckCycle(); for (Edge edge : edges) { spanning_tree[edge.sourcevertex][edge.destinationvertex] = edge.weight; spanning_tree[edge.destinationvertex][edge.sourcevertex] = edge.weight; if (checkCycle.checkCycle(spanning_tree, edge.sourcevertex)) { spanning_tree[edge.sourcevertex][edge.destinationvertex] = 0; spanning_tree[edge.destinationvertex][edge.sourcevertex] = 0; edge.weight = -1; continue; } visited[edge.sourcevertex] = 1; visited[edge.destinationvertex] = 1; for (int i = 0; i < visited.length; i++) { if (visited[i] == 0) { finished = false; break; } else { finished = true; } } if (finished) break; } System.out.println("The spanning tree is "); for (int i = 1; i <= numberOfVertices; i++) System.out.print("\t" + i); System.out.println(); for (int source = 1; source <= numberOfVertices; source++) { System.out.print(source + "\t"); for (int destination = 1; destination <= numberOfVertices; destination++) { System.out.print(spanning_tree[source][destination] + "\t"); } System.out.println(); } } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; Scanner scan = new Scanner(System.in); System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = MAX_VALUE; } } } KruskalAlgorithm kruskalAlgorithm = new KruskalAlgorithm(number_of_vertices); kruskalAlgorithm.kruskalAlgorithm(adjacency_matrix); scan.close(); } } class Edge { int sourcevertex; int destinationvertex; int weight; } class EdgeComparator implements Comparator { @Override public int compare(Edge edge1, Edge edge2) { if (edge1.weight < edge2.weight) return -1; if (edge1.weight > edge2.weight) return 1; return 0; } } class CheckCycle { private Stack stack; private int adjacencyMatrix[][]; public CheckCycle() { stack = new Stack(); } public boolean checkCycle(int adjacency_matrix[][], int source) { boolean cyclepresent = false; int number_of_nodes = adjacency_matrix[source].length - 1; adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1]; for (int sourcevertex = 1; sourcevertex <= number_of_nodes; sourcevertex++) { for (int destinationvertex = 1; destinationvertex <= number_of_nodes; destinationvertex++) { adjacencyMatrix[sourcevertex][destinationvertex] = adjacency_matrix[sourcevertex[destinationvertex]; } } int visited[] = new int[number_of_nodes + 1]; int element = source; int i = source; visited[source] = 1; stack.push(source); while (!stack.isEmpty()) { element = stack.peek(); i = element; while (i <= number_of_nodes) { if (adjacencyMatrix[element][i] >= 1 && visited[i] == 1) { if (stack.contains(i)) { cyclepresent = true; return cyclepresent; } } if (adjacencyMatrix[element][i] >= 1 && visited[i] == 0) { stack.push(i); visited[i] = 1; adjacencyMatrix[element][i] = 0;// mark as labelled; adjacencyMatrix[i][element] = 0; element = i; i = 1; continue; } i++; } stack.pop(); } return cyclepresent; } } /* Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 6 8 6 0 0 6 0 0 5 10 0 8 0 0 7 5 3 6 5 7 0 0 0 0 10 5 0 0 3 0 0 3 0 3 0 The spanning tree is 1 2 3 4 5 6 1 0 6 0 0 0 0 2 6 0 0 5 0 0 3 0 0 0 7 0 3 4 0 5 7 0 0 0 5 0 0 0 0 0 3 6 0 0 3 0 3 0