/*This is a Java Program to implement Graham Scan Algorithm. Graham’s scan is a method of computing the convex hull of a finite set of points in the plane with time complexity O(n log n).*/ //This is a java program to implement Graham Scan Algorithm import java.util.Arrays; import java.util.Comparator; import java.util.Scanner; import java.util.Stack; class Point2D implements Comparable { public static final Comparator X_ORDER = new XOrder(); public static final Comparator Y_ORDER = new YOrder(); public static final Comparator R_ORDER = new ROrder(); public final Comparator POLAR_ORDER = new PolarOrder(); public final Comparator ATAN2_ORDER = new Atan2Order(); public final Comparator DISTANCE_TO_ORDER = new DistanceToOrder(); private final double x; // x coordinate private final double y; // y coordinate public Point2D(double x, double y) { if (Double.isInfinite(x) || Double.isInfinite(y)) throw new IllegalArgumentException("Coordinates must be finite"); if (Double.isNaN(x) || Double.isNaN(y)) throw new IllegalArgumentException("Coordinates cannot be NaN"); if (x == 0.0) x = 0.0; // convert -0.0 to +0.0 if (y == 0.0) y = 0.0; // convert -0.0 to +0.0 this.x = x; this.y = y; } public double x() { return x; } public double y() { return y; } public double r() { return Math.sqrt(x * x + y * y); } public double theta() { return Math.atan2(y, x); } private double angleTo(Point2D that) { double dx = that.x - this.x; double dy = that.y - this.y; return Math.atan2(dy, dx); } public static int ccw(Point2D a, Point2D b, Point2D c) { double area2 = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); if (area2 < 0) return -1; else if (area2 > 0) return +1; else return 0; } public static double area2(Point2D a, Point2D b, Point2D c) { return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); } public double distanceTo(Point2D that) { double dx = this.x - that.x; double dy = this.y - that.y; return Math.sqrt(dx * dx + dy * dy); } public double distanceSquaredTo(Point2D that) { double dx = this.x - that.x; double dy = this.y - that.y; return dx * dx + dy * dy; } public int compareTo(Point2D that) { if (this.y < that.y) return -1; if (this.y > that.y) return +1; if (this.x < that.x) return -1; if (this.x > that.x) return +1; return 0; } private static class XOrder implements Comparator { public int compare(Point2D p, Point2D q) { if (p.x < q.x) return -1; if (p.x > q.x) return +1; return 0; } } private static class YOrder implements Comparator { public int compare(Point2D p, Point2D q) { if (p.y < q.y) return -1; if (p.y > q.y) return +1; return 0; } } private static class ROrder implements Comparator { public int compare(Point2D p, Point2D q) { double delta = (p.x * p.x + p.y * p.y) - (q.x * q.x + q.y * q.y); if (delta < 0) return -1; if (delta > 0) return +1; return 0; } } private class Atan2Order implements Comparator { public int compare(Point2D q1, Point2D q2) { double angle1 = angleTo(q1); double angle2 = angleTo(q2); if (angle1 < angle2) return -1; else if (angle1 > angle2) return +1; else return 0; } } private class PolarOrder implements Comparator { public int compare(Point2D q1, Point2D q2) { double dx1 = q1.x - x; double dy1 = q1.y - y; double dx2 = q2.x - x; double dy2 = q2.y - y; if (dy1 >= 0 && dy2 < 0) return -1; // q1 above; q2 below else if (dy2 >= 0 && dy1 < 0) return +1; // q1 below; q2 above else if (dy1 == 0 && dy2 == 0) { // 3-collinear and horizontal if (dx1 >= 0 && dx2 < 0) return -1; else if (dx2 >= 0 && dx1 < 0) return +1; else return 0; } else return -ccw(Point2D.this, q1, q2); // both above or below } } private class DistanceToOrder implements Comparator { public int compare(Point2D p, Point2D q) { double dist1 = distanceSquaredTo(p); double dist2 = distanceSquaredTo(q); if (dist1 < dist2) return -1; else if (dist1 > dist2) return +1; else return 0; } } public boolean equals(Object other) { if (other == this) return true; if (other == null) return false; if (other.getClass() != this.getClass()) return false; Point2D that = (Point2D) other; return this.x == that.x && this.y == that.y; } public String toString() { return "(" + x + ", " + y + ")"; } public int hashCode() { int hashX = ((Double) x).hashCode(); int hashY = ((Double) y).hashCode(); return 31 * hashX + hashY; } } public class GrahamScan { private Stack hull = new Stack(); public GrahamScan(Point2D[] pts) { // defensive copy int N = pts.length; Point2D[] points = new Point2D[N]; for (int i = 0; i < N; i++) points[i] = pts[i]; Arrays.sort(points); Arrays.sort(points, 1, N, points[0].POLAR_ORDER); hull.push(points[0]); // p[0] is first extreme point int k1; for (k1 = 1; k1 < N; k1++) if (!points[0].equals(points[k1])) break; if (k1 == N) return; // all points equal int k2; for (k2 = k1 + 1; k2 < N; k2++) if (Point2D.ccw(points[0], points[k1], points[k2]) != 0) break; hull.push(points[k2 - 1]); // points[k2-1] is second extreme point for (int i = k2; i < N; i++) { Point2D top = hull.pop(); while (Point2D.ccw(hull.peek(), top, points[i]) <= 0) { top = hull.pop(); } hull.push(top); hull.push(points[i]); } assert isConvex(); } public Iterable hull() { Stack s = new Stack(); for (Point2D p : hull) s.push(p); return s; } private boolean isConvex() { int N = hull.size(); if (N <= 2) return true; Point2D[] points = new Point2D[N]; int n = 0; for (Point2D p : hull()) { points[n++] = p; } for (int i = 0; i < N; i++) { if (Point2D .ccw(points[i], points[(i + 1) % N], points[(i + 2) % N]) <= 0) { return false; } } return true; } // test client public static void main(String[] args) { System.out.println("Graham Scan Test"); Scanner sc = new Scanner(System.in); System.out.println("Enter the number of points"); int N = sc.nextInt(); Point2D[] points = new Point2D[N]; System.out.println("Enter the coordinates of each points: "); for (int i = 0; i < N; i++) { int x = sc.nextInt(); int y = sc.nextInt(); points[i] = new Point2D(x, y); } GrahamScan graham = new GrahamScan(points); System.out.println("The convex hull consists of following points: "); for (Point2D p : graham.hull()) System.out.println(p); sc.close(); } } /* Graham Scan Test Enter the number of points 5 Enter the coordinates of each points: 1 2 2 3 4 5 20 10 6 4 The convex hull consists of following points: (1.0, 2.0) (6.0, 4.0) (20.0, 10.0) (4.0, 5.0) Graham Scan Test Enter the number of points 5 Enter the coordinates of each points: 1 2 2 3 3 4 4 5 5 6 The convex hull consists of following points: (1.0, 2.0) (5.0, 6.0)