/* This is a java program to perform a simple matrix multiplication. For matrix multiplication to happen the column of the first matrix should be equal to the row of the second matrix. */ // This is sample program for matrix multiplication // The complexity of the algorithm is O(n^3) import java.util.Scanner; public class MatixMultiplication { public static void main(String args[]) { int n; Scanner input = new Scanner(System.in); System.out.println("Enter the base of squared matrices"); n = input.nextInt(); int[][] a = new int[n][n]; int[][] b = new int[n][n]; int[][] c = new int[n][n]; System.out.println("Enter the elements of 1st martix row wise \n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { a[i][j] = input.nextInt(); } } System.out.println("Enter the elements of 2nd martix row wise \n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { b[i][j] = input.nextInt(); } } System.out.println("Multiplying the matrices..."); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = c[i][j] + a[i][k] * b[k][j]; } } } System.out.println("The product is:"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(c[i][j] + " "); } System.out.println(); } input.close(); } } /* Enter the base of squared matrices: 3 Enter the elements of 1st martix row wise: 1 2 3 4 5 6 7 8 9 Enter the elements of 2nd martix row wise: 2 3 4 5 6 7 8 9 1 Multiplying the matrices... The product is: 36 42 21 81 96 57 126 150 93