import edu.princeton.cs.introcs.StdOut;
/*************************************************************************
* Compilation: javac FordFulkerson.java
* Execution: java FordFulkerson V E
* Dependencies: FlowNetwork.java FlowEdge.java Queue.java
*
* Ford-Fulkerson algorithm for computing a max flow and
* a min cut using shortest augmenting path rule.
*
*********************************************************************/
/**
* The FordFulkerson class represents a data type for computing a
* maximum st-flow and minimum st-cut in a flow
* network.
*
* This implementation uses the Ford-Fulkerson algorithm with
* the shortest augmenting path heuristic.
* The constructor takes time proportional to E V ( E + V )
* in the worst case and extra space (not including the network)
* proportional to V , where V is the number of vertices
* and E is the number of edges. In practice, the algorithm will
* run much faster.
* Afterwards, the inCut() and value() methods take
* constant time.
*
* If the capacities and initial flow values are all integers, then this
* implementation guarantees to compute an integer-valued maximum flow.
* If the capacities and floating-point numbers, then floating-point
* roundoff error can accumulate.
*
* For additional documentation, see Section 6.4
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class FordFulkerson {
private boolean[] marked; // marked[v] = true iff s->v path in residual graph
private FlowEdge[] edgeTo; // edgeTo[v] = last edge on shortest residual s->v path
private double value; // current value of max flow
/**
* Compute a maximum flow and minimum cut in the network G
* from vertex s to vertex t .
* @param G the flow network
* @param s the source vertex
* @param t the sink vertex
* @throws IndexOutOfBoundsException unless 0 <= s < V
* @throws IndexOutOfBoundsException unless 0 <= t < V
* @throws IllegalArgumentException if s = t
* @throws IllegalArgumentException if initial flow is infeasible
*/
public FordFulkerson(FlowNetwork G, int s, int t) {
if (s < 0 || s >= G.V()) {
throw new IndexOutOfBoundsException("Source s is invalid: " + s);
}
if (t < 0 || t >= G.V()) {
throw new IndexOutOfBoundsException("Sink t is invalid: " + t);
}
if (s == t) {
throw new IllegalArgumentException("Source equals sink");
}
value = excess(G, t);
if (!isFeasible(G, s, t)) {
throw new IllegalArgumentException("Initial flow is infeasible");
}
// while there exists an augmenting path, use it
while (hasAugmentingPath(G, s, t)) {
// compute bottleneck capacity
double bottle = Double.POSITIVE_INFINITY;
for (int v = t; v != s; v = edgeTo[v].other(v)) {
bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));
}
// augment flow
for (int v = t; v != s; v = edgeTo[v].other(v)) {
edgeTo[v].addResidualFlowTo(v, bottle);
}
value += bottle;
}
// check optimality conditions
assert check(G, s, t);
}
/**
* Returns the value of the maximum flow.
* @return the value of the maximum flow
*/
public double value() {
return value;
}
// is v in the s side of the min s-t cut?
/**
* Is vertex v on the s side of the minimum st-cut?
* @return true if vertex v is on the s side of the micut,
* and false if vertex v is on the t side.
* @throws IndexOutOfBoundsException unless 0 <= v < V
*/
public boolean inCut(int v) {
int V = marked.length;
if (v < 0 || v >= V)
throw new IndexOutOfBoundsException("vertex " + v + " is not between 0 and " + (V-1));
return marked[v];
}
// is there an augmenting path?
// if so, upon termination edgeTo[] will contain a parent-link representation of such a path
private boolean hasAugmentingPath(FlowNetwork G, int s, int t) {
edgeTo = new FlowEdge[G.V()];
marked = new boolean[G.V()];
// breadth-first search
Queue q = new Queue();
q.enqueue(s);
marked[s] = true;
while (!q.isEmpty()) {
int v = q.dequeue();
for (FlowEdge e : G.adj(v)) {
int w = e.other(v);
// if residual capacity from v to w
if (e.residualCapacityTo(w) > 0) {
if (!marked[w]) {
edgeTo[w] = e;
marked[w] = true;
q.enqueue(w);
}
}
}
}
// is there an augmenting path?
return marked[t];
}
// return excess flow at vertex v
private double excess(FlowNetwork G, int v) {
double excess = 0.0;
for (FlowEdge e : G.adj(v)) {
if (v == e.from()) excess -= e.flow();
else excess += e.flow();
}
return excess;
}
// return excess flow at vertex v
private boolean isFeasible(FlowNetwork G, int s, int t) {
double EPSILON = 1E-11;
// check that capacity constraints are satisfied
for (int v = 0; v < G.V(); v++) {
for (FlowEdge e : G.adj(v)) {
if (e.flow() < -EPSILON || e.flow() > e.capacity() + EPSILON) {
System.err.println("Edge does not satisfy capacity constraints: " + e);
return false;
}
}
}
// check that net flow into a vertex equals zero, except at source and sink
if (Math.abs(value + excess(G, s)) > EPSILON) {
System.err.println("Excess at source = " + excess(G, s));
System.err.println("Max flow = " + value);
return false;
}
if (Math.abs(value - excess(G, t)) > EPSILON) {
System.err.println("Excess at sink = " + excess(G, t));
System.err.println("Max flow = " + value);
return false;
}
for (int v = 0; v < G.V(); v++) {
if (v == s || v == t) continue;
else if (Math.abs(excess(G, v)) > EPSILON) {
System.err.println("Net flow out of " + v + " doesn't equal zero");
return false;
}
}
return true;
}
// check optimality conditions
private boolean check(FlowNetwork G, int s, int t) {
// check that flow is feasible
if (!isFeasible(G, s, t)) {
System.err.println("Flow is infeasible");
return false;
}
// check that s is on the source side of min cut and that t is not on source side
if (!inCut(s)) {
System.err.println("source " + s + " is not on source side of min cut");
return false;
}
if (inCut(t)) {
System.err.println("sink " + t + " is on source side of min cut");
return false;
}
// check that value of min cut = value of max flow
double mincutValue = 0.0;
for (int v = 0; v < G.V(); v++) {
for (FlowEdge e : G.adj(v)) {
if ((v == e.from()) && inCut(e.from()) && !inCut(e.to()))
mincutValue += e.capacity();
}
}
double EPSILON = 1E-11;
if (Math.abs(mincutValue - value) > EPSILON) {
System.err.println("Max flow value = " + value + ", min cut value = " + mincutValue);
return false;
}
return true;
}
/**
* Unit tests the FordFulkerson data type.
*/
public static void main(String[] args) {
// create flow network with V vertices and E edges
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
int s = 0, t = V-1;
FlowNetwork G = new FlowNetwork(V, E);
StdOut.println(G);
// compute maximum flow and minimum cut
FordFulkerson maxflow = new FordFulkerson(G, s, t);
StdOut.println("Max flow from " + s + " to " + t);
for (int v = 0; v < G.V(); v++) {
for (FlowEdge e : G.adj(v)) {
if ((v == e.from()) && e.flow() > 0)
StdOut.println(" " + e);
}
}
// print min-cut
StdOut.print("Min cut: ");
for (int v = 0; v < G.V(); v++) {
if (maxflow.inCut(v)) StdOut.print(v + " ");
}
StdOut.println();
StdOut.println("Max flow value = " + maxflow.value());
}
}