import edu.princeton.cs.introcs.In; import edu.princeton.cs.introcs.StdOut; /************************************************************************* * Compilation: javac BreadthFirstPaths.java * Execution: java BreadthFirstPaths G s * Dependencies: Graph.java Queue.java Stack.java StdOut.java * Data files: http://algs4.cs.princeton.edu/41undirected/tinyCG.txt * * Run breadth first search on an undirected graph. * Runs in O(E + V) time. * * % java Graph tinyCG.txt * 6 8 * 0: 2 1 5 * 1: 0 2 * 2: 0 1 3 4 * 3: 5 4 2 * 4: 3 2 * 5: 3 0 * * % java BreadthFirstPaths tinyCG.txt 0 * 0 to 0 (0): 0 * 0 to 1 (1): 0-1 * 0 to 2 (1): 0-2 * 0 to 3 (2): 0-2-3 * 0 to 4 (2): 0-2-4 * 0 to 5 (1): 0-5 * * % java BreadthFirstPaths largeG.txt 0 * 0 to 0 (0): 0 * 0 to 1 (418): 0-932942-474885-82707-879889-971961-... * 0 to 2 (323): 0-460790-53370-594358-780059-287921-... * 0 to 3 (168): 0-713461-75230-953125-568284-350405-... * 0 to 4 (144): 0-460790-53370-310931-440226-380102-... * 0 to 5 (566): 0-932942-474885-82707-879889-971961-... * 0 to 6 (349): 0-932942-474885-82707-879889-971961-... * *************************************************************************/ /** * The BreadthFirstPaths class represents a data type for finding * shortest paths (number of edges) from a source vertex s * (or a set of source vertices) * to every other vertex in an undirected graph. * * This implementation uses breadth-first search. * The constructor takes time proportional to V + E , * where V is the number of vertices and E is the number of edges. * It uses extra space (not including the graph) proportional to V . * * For additional documentation, see Section 4.1 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class BreadthFirstPaths { private static final int INFINITY = Integer.MAX_VALUE; private boolean[] marked; // marked[v] = is there an s-v path private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path private int[] distTo; // distTo[v] = number of edges shortest s-v path /** * Computes the shortest path between the source vertex s * and every other vertex in the graph G . * @param G the graph * @param s the source vertex */ public BreadthFirstPaths(Graph G, int s) { marked = new boolean[G.V()]; distTo = new int[G.V()]; edgeTo = new int[G.V()]; bfs(G, s); assert check(G, s); } /** * Computes the shortest path between any one of the source vertices in sources * and every other vertex in graph G . * @param G the graph * @param sources the source vertices */ public BreadthFirstPaths(Graph G, Iterable sources) { marked = new boolean[G.V()]; distTo = new int[G.V()]; edgeTo = new int[G.V()]; for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY; bfs(G, sources); } // breadth-first search from a single source private void bfs(Graph G, int s) { Queue q = new Queue(); for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY; distTo[s] = 0; marked[s] = true; q.enqueue(s); while (!q.isEmpty()) { int v = q.dequeue(); for (int w : G.adj(v)) { if (!marked[w]) { edgeTo[w] = v; distTo[w] = distTo[v] + 1; marked[w] = true; q.enqueue(w); } } } } // breadth-first search from multiple sources private void bfs(Graph G, Iterable sources) { Queue q = new Queue(); for (int s : sources) { marked[s] = true; distTo[s] = 0; q.enqueue(s); } while (!q.isEmpty()) { int v = q.dequeue(); for (int w : G.adj(v)) { if (!marked[w]) { edgeTo[w] = v; distTo[w] = distTo[v] + 1; marked[w] = true; q.enqueue(w); } } } } /** * Is there a path between the source vertex s (or sources) and vertex v ? * @param v the vertex * @return true if there is a path, and false otherwise */ public boolean hasPathTo(int v) { return marked[v]; } /** * Returns the number of edges in a shortest path between the source vertex s * (or sources) and vertex v ? * @param v the vertex * @return the number of edges in a shortest path */ public int distTo(int v) { return distTo[v]; } /** * Returns a shortest path between the source vertex s (or sources) * and v , or null if no such path. * @param v the vertex * @return the sequence of vertices on a shortest path, as an Iterable */ public Iterable pathTo(int v) { if (!hasPathTo(v)) return null; Stack path = new Stack(); int x; for (x = v; distTo[x] != 0; x = edgeTo[x]) path.push(x); path.push(x); return path; } // check optimality conditions for single source private boolean check(Graph G, int s) { // check that the distance of s = 0 if (distTo[s] != 0) { StdOut.println("distance of source " + s + " to itself = " + distTo[s]); return false; } // check that for each edge v-w dist[w] <= dist[v] + 1 // provided v is reachable from s for (int v = 0; v < G.V(); v++) { for (int w : G.adj(v)) { if (hasPathTo(v) != hasPathTo(w)) { StdOut.println("edge " + v + "-" + w); StdOut.println("hasPathTo(" + v + ") = " + hasPathTo(v)); StdOut.println("hasPathTo(" + w + ") = " + hasPathTo(w)); return false; } if (hasPathTo(v) && (distTo[w] > distTo[v] + 1)) { StdOut.println("edge " + v + "-" + w); StdOut.println("distTo[" + v + "] = " + distTo[v]); StdOut.println("distTo[" + w + "] = " + distTo[w]); return false; } } } // check that v = edgeTo[w] satisfies distTo[w] + distTo[v] + 1 // provided v is reachable from s for (int w = 0; w < G.V(); w++) { if (!hasPathTo(w) || w == s) continue; int v = edgeTo[w]; if (distTo[w] != distTo[v] + 1) { StdOut.println("shortest path edge " + v + "-" + w); StdOut.println("distTo[" + v + "] = " + distTo[v]); StdOut.println("distTo[" + w + "] = " + distTo[w]); return false; } } return true; } /** * Unit tests the BreadthFirstPaths data type. */ public static void main(String[] args) { In in = new In(args[0]); Graph G = new Graph(in); // StdOut.println(G); int s = Integer.parseInt(args[1]); BreadthFirstPaths bfs = new BreadthFirstPaths(G, s); for (int v = 0; v < G.V(); v++) { if (bfs.hasPathTo(v)) { StdOut.printf("%d to %d (%d): ", s, v, bfs.distTo(v)); for (int x : bfs.pathTo(v)) { if (x == s) StdOut.print(x); else StdOut.print("-" + x); } StdOut.println(); } else { StdOut.printf("%d to %d (-): not connected\n", s, v); } } } }