/* This is a java program find a path between two nodes in a graph if it exists. Path exists between two nodes if there is a connectivity between them through other nodes. A simple run of Breadth First Search will decide whether there is path between two given nodes or not. */ //This is a sample program to find the minimum wire length between two component in a electrical circuits import java.util.*; class Node { public int label; // this node's label (parent node in path tree) public int weight; // weight of edge to this node (distance to start) public Node(int v, int w) { label = v; weight = w; } } public class ShortestPath { public static Scanner in; // for standard input public static int n, m; // n = #vertices, m = #edges public static LinkedList[] graph; // adjacency list representation public static int start, end; // start and end points for shortest path public static void main(String[] args) { in = new Scanner(System.in); // Input the graph: System.out .println("Enter the number of components and wires in a circuit:"); n = in.nextInt(); m = in.nextInt(); // Initialize adjacency list structure to empty lists: graph = new LinkedList[n]; for (int i = 0; i < n; i++) graph[i] = new LinkedList(); // Add each edge twice, once for each endpoint: System.out .println("Mention the wire between components and its length:"); for (int i = 0; i < m; i++) { int v1 = in.nextInt(); int v2 = in.nextInt(); int w = in.nextInt(); graph[v1].add(new Node(v2, w)); graph[v2].add(new Node(v1, w)); } // Input starting and ending vertices: System.out .println("Enter the start and end for which length is to be minimized: "); start = in.nextInt(); end = in.nextInt(); // FOR DEBUGGING ONLY: displayGraph(); // Print shortest path from start to end: shortest(); } public static void shortest() { boolean[] done = new boolean[n]; Node[] table = new Node[n]; for (int i = 0; i < n; i++) table[i] = new Node(-1, Integer.MAX_VALUE); table[start].weight = 0; for (int count = 0; count < n; count++) { int min = Integer.MAX_VALUE; int minNode = -1; for (int i = 0; i < n; i++) if (!done[i] && table[i].weight < min) { min = table[i].weight; minNode = i; } done[minNode] = true; ListIterator iter = graph[minNode].listIterator(); while (iter.hasNext()) { Node nd = (Node) iter.next(); int v = nd.label; int w = nd.weight; if (!done[v] && table[minNode].weight + w < table[v].weight) { table[v].weight = table[minNode].weight + w; table[v].label = minNode; } } } for (int i = 0; i < n; i++) { if (table[i].weight < Integer.MAX_VALUE) { System.out.print("Wire from " + i + " to " + start + " with length " + table[i].weight + ": "); int next = table[i].label; while (next >= 0) { System.out.print(next + " "); next = table[next].label; } System.out.println(); } else System.out.println("No wire from " + i + " to " + start); } } public static void displayGraph() { for (int i = 0; i < n; i++) { System.out.print(i + ": "); ListIterator nbrs = graph[i].listIterator(0); while (nbrs.hasNext()) { Node nd = (Node) nbrs.next(); System.out.print(nd.label + "(" + nd.weight + ") "); } System.out.println(); } } } /* Enter the number of components and wires in a circuit: 4 3 Mention the wire between components and its length: 0 1 2 1 3 3 1 2 2 Enter the start and end for which length is to be minimized: 0 1 0: 1(2) 1: 0(2) 3(3) 2(2) 2: 1(2) 3: 1(3) Wire from 0 to 0 with length 0: Wire from 1 to 0 with length 2: 0 Wire from 2 to 0 with length 4: 1 0 Wire from 3 to 0 with length 5: 1 0