/*This is a Java Program to implement Treap. Treap is a form of binary search tree data structure that maintain a dynamic set of ordered keys and allow binary searches among the keys. After any sequence of insertions and deletions of keys, the shape of the tree is a random variable with the same probability distribution as a random binary tree; in particular, with high probability its height is proportional to the logarithm of the number of keys, so that each search, insertion, or deletion operation takes logarithmic time to perform.*/ /** * Java Program to Implement Treap **/ import java.util.Scanner; import java.util.Random; /** Class TreapNode **/ class TreapNode { TreapNode left, right; int priority, element; /** Constructor **/ public TreapNode() { this.element = 0; this.left = this; this.right = this; this.priority = Integer.MAX_VALUE; } /** Constructor **/ public TreapNode(int ele) { this(ele, null, null); } /** Constructor **/ public TreapNode(int ele, TreapNode left, TreapNode right) { this.element = ele; this.left = left; this.right = right; this.priority = new Random().nextInt( ); } } /** Class TreapTree **/ class TreapTree { private TreapNode root; private static TreapNode nil = new TreapNode(); /** Constructor **/ public TreapTree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** Make the tree logically empty **/ public void makeEmpty() { root = nil; } /** Functions to insert data **/ public void insert(int X) { root = insert(X, root); } private TreapNode insert(int X, TreapNode T) { if (T == nil) return new TreapNode(X, nil, nil); else if (X < T.element) { T.left = insert(X, T.left); if (T.left.priority < T.priority) { TreapNode L = T.left; T.left = L.right; L.right = T; return L; } } else if (X > T.element) { T.right = insert(X, T.right); if (T.right.priority < T.priority) { TreapNode R = T.right; T.right = R.left; R.left = T; return R; } } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(TreapNode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(TreapNode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(TreapNode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(TreapNode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(TreapNode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class TreapTest **/ public class TreapTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of Treap **/ TreapTree trpt = new TreapTree(); System.out.println("Treap Test\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nTreap Operations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); trpt.insert( scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ trpt.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ trpt.countNodes()); break; case 4 : System.out.println("Empty status = "+ trpt.isEmpty()); break; case 5 : System.out.println("\nTreap Cleared"); trpt.makeEmpty(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); trpt.postorder(); System.out.print("\nPre order : "); trpt.preorder(); System.out.print("\nIn order : "); trpt.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } } /* Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 24 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 6 Post order : 6 24 Pre order : 24 6 In order : 6 24 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 94 Post order : 6 94 24 Pre order : 24 6 94 In order : 6 24 94 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 19 Post order : 6 94 24 19 Pre order : 19 6 24 94 In order : 6 19 24 94 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 28 Post order : 6 24 19 94 28 Pre order : 28 19 6 24 94 In order : 6 19 24 28 94 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 5 Post order : 6 5 24 19 94 28 Pre order : 28 19 5 6 24 94 In order : 5 6 19 24 28 94 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 63 Post order : 6 5 24 19 28 94 63 Pre order : 63 28 19 5 6 24 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 6 5 24 19 28 94 63 Pre order : 63 28 19 5 6 24 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 7 Post order : 6 5 24 19 28 94 63 Pre order : 63 28 19 5 6 24 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 Treap Cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y Treap Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n