import edu.princeton.cs.introcs.In; import edu.princeton.cs.introcs.StdOut; /************************************************************************* * Compilation: javac TarjanSCC.java * Execution: Java TarjanSCC V E * Dependencies: Digraph.java Stack.java TransitiveClosure.java StdOut.java * * Compute the strongly-connected components of a digraph using * Tarjan's algorithm. * * Runs in O(E + V) time. * * % java TarjanSCC tinyDG.txt * 5 components * 1 * 0 2 3 4 5 * 9 10 11 12 * 6 8 * 7 * *************************************************************************/ /** * The TarjanSCC class represents a data type for * determining the strong components in a digraph. * The id operation determines in which strong component * a given vertex lies; the areStronglyConnected operation * determines whether two vertices are in the same strong component; * and the count operation determines the number of strong * components. * The component identifier of a component is one of the * vertices in the strong component: two vertices have the same component * identifier if and only if they are in the same strong component. * * This implementation uses Tarjan's algorithm. * The constructor takes time proportional to V + E * (in the worst case), * where V is the number of vertices and E is the number of edges. * Afterwards, the id , count , and areStronglyConnected * operations take constant time. * For alternate implementations of the same API, see * {@link KosarajuSharirSCC} and {@link GabowSCC}. * * For additional documentation, see Section 4.2 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class TarjanSCC { private boolean[] marked; // marked[v] = has v been visited? private int[] id; // id[v] = id of strong component containing v private int[] low; // low[v] = low number of v private int pre; // preorder number counter private int count; // number of strongly-connected components private Stack stack; /** * Computes the strong components of the digraph G . * @param G the digraph */ public TarjanSCC(Digraph G) { marked = new boolean[G.V()]; stack = new Stack(); id = new int[G.V()]; low = new int[G.V()]; for (int v = 0; v < G.V(); v++) { if (!marked[v]) dfs(G, v); } // check that id[] gives strong components assert check(G); } private void dfs(Digraph G, int v) { marked[v] = true; low[v] = pre++; int min = low[v]; stack.push(v); for (int w : G.adj(v)) { if (!marked[w]) dfs(G, w); if (low[w] < min) min = low[w]; } if (min < low[v]) { low[v] = min; return; } int w; do { w = stack.pop(); id[w] = count; low[w] = G.V(); } while (w != v); count++; } /** * Returns the number of strong components. * @return the number of strong components */ public int count() { return count; } /** * Are vertices v and w in the same strong component? * @param v one vertex * @param w the other vertex * @return true if vertices v and w are in the same * strong component, and false otherwise */ public boolean stronglyConnected(int v, int w) { return id[v] == id[w]; } /** * Returns the component id of the strong component containing vertex v . * @param v the vertex * @return the component id of the strong component containing vertex v */ public int id(int v) { return id[v]; } // does the id[] array contain the strongly connected components? private boolean check(Digraph G) { TransitiveClosure tc = new TransitiveClosure(G); for (int v = 0; v < G.V(); v++) { for (int w = 0; w < G.V(); w++) { if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v))) return false; } } return true; } /** * Unit tests the TarjanSCC data type. */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); TarjanSCC scc = new TarjanSCC(G); // number of connected components int M = scc.count(); StdOut.println(M + " components"); // compute list of vertices in each strong component Queue[] components = (Queue[]) new Queue[M]; for (int i = 0; i < M; i++) { components[i] = new Queue(); } for (int v = 0; v < G.V(); v++) { components[scc.id(v)].enqueue(v); } // print results for (int i = 0; i < M; i++) { for (int v : components[i]) { StdOut.print(v + " "); } StdOut.println(); } } }