/************************************************************************* * Compilation: javac -cp .:jama.jar PolynomialRegression.java * Execution: java -cp .:jama.jar PolynomialRegression * Dependencies: jama.jar StdOut.java * * % java -cp .:jama.jar PolynomialRegression * 0.01 N^3 + -1.64 N^2 + 168.92 N + -2113.73 (R^2 = 0.997) * *************************************************************************/ import Jama.Matrix; import Jama.QRDecomposition; import edu.princeton.cs.introcs.StdOut; /** * The PolynomialRegression class performs a polynomial regression * on an set of N data points ( yi , xi ). * That is, it fits a polynomial * y = β0 + β1 x + * β2 x 2 + ... + * β d x d * (where y is the response variable, x is the predictor variable, * and the β i are the regression coefficients) * that minimizes the sum of squared residuals of the multiple regression model. * It also computes associated the coefficient of determination R 2. * * This implementation performs a QR-decomposition of the underlying * Vandermonde matrix, so it is not the fastest or most numerically * stable way to perform the polynomial regression. * * @author Robert Sedgewick * @author Kevin Wayne */ public class PolynomialRegression { private final int N; // number of observations private final int degree; // degree of the polynomial regression private final Matrix beta; // the polynomial regression coefficients private double SSE; // sum of squares due to error private double SST; // total sum of squares /** * Performs a polynomial reggression on the data points (y[i], x[i]) . * @param x the values of the predictor variable * @param y the corresponding values of the response variable * @param degree the degree of the polynomial to fit * @throws java.lang.IllegalArgumentException if the lengths of the two arrays are not equal */ public PolynomialRegression(double[] x, double[] y, int degree) { this.degree = degree; N = x.length; // build Vandermonde matrix double[][] vandermonde = new double[N][degree+1]; for (int i = 0; i < N; i++) { for (int j = 0; j <= degree; j++) { vandermonde[i][j] = Math.pow(x[i], j); } } Matrix X = new Matrix(vandermonde); // create matrix from vector Matrix Y = new Matrix(y, N); // find least squares solution QRDecomposition qr = new QRDecomposition(X); beta = qr.solve(Y); // mean of y[] values double sum = 0.0; for (int i = 0; i < N; i++) sum += y[i]; double mean = sum / N; // total variation to be accounted for for (int i = 0; i < N; i++) { double dev = y[i] - mean; SST += dev*dev; } // variation not accounted for Matrix residuals = X.times(beta).minus(Y); SSE = residuals.norm2() * residuals.norm2(); } /** * Returns the j th regression coefficient * @return the j th regression coefficient */ public double beta(int j) { return beta.get(j, 0); } /** * Returns the degree of the polynomial to fit * @return the degree of the polynomial to fit */ public int degree() { return degree; } /** * Returns the coefficient of determination R 2. * @return the coefficient of determination R 2, which is a real number between 0 and 1 */ public double R2() { if (SST == 0.0) return 1.0; // constant function return 1.0 - SSE/SST; } /** * Returns the expected response y given the value of the predictor * variable x . * @param x the value of the predictor variable * @return the expected response y given the value of the predictor * variable x */ public double predict(double x) { // horner's method double y = 0.0; for (int j = degree; j >= 0; j--) y = beta(j) + (x * y); return y; } /** * Returns a string representation of the polynomial regression model. * @return a string representation of the polynomial regression model, * including the best-fit polynomial and the coefficient of determination R 2 */ @Override public String toString() { String s = ""; int j = degree; // ignoring leading zero coefficients while (j >= 0 && Math.abs(beta(j)) < 1E-5) j--; // create remaining terms for (j = j; j >= 0; j--) { if (j == 0) s += String.format("%.2f ", beta(j)); else if (j == 1) s += String.format("%.2f N + ", beta(j)); else s += String.format("%.2f N^%d + ", beta(j), j); } return s + " (R^2 = " + String.format("%.3f", R2()) + ")"; } public static void main(String[] args) { double[] x = { 10, 20, 40, 80, 160, 200 }; double[] y = { 100, 350, 1500, 6700, 20160, 40000 }; PolynomialRegression regression = new PolynomialRegression(x, y, 3); StdOut.println(regression); } }