import edu.princeton.cs.introcs.In; import edu.princeton.cs.introcs.StdOut; /************************************************************************* * Compilation: javac DijkstraSP.java * Execution: java DijkstraSP input.txt s * Dependencies: EdgeWeightedDigraph.java IndexMinPQ.java Stack.java DirectedEdge.java * Data files: http://algs4.cs.princeton.edu/44sp/tinyEWD.txt * http://algs4.cs.princeton.edu/44sp/mediumEWD.txt * http://algs4.cs.princeton.edu/44sp/largeEWD.txt * * Dijkstra's algorithm. Computes the shortest path tree. * Assumes all weights are nonnegative. * * % java DijkstraSP tinyEWD.txt 0 * 0 to 0 (0.00) * 0 to 1 (1.05) 0->4 0.38 4->5 0.35 5->1 0.32 * 0 to 2 (0.26) 0->2 0.26 * 0 to 3 (0.99) 0->2 0.26 2->7 0.34 7->3 0.39 * 0 to 4 (0.38) 0->4 0.38 * 0 to 5 (0.73) 0->4 0.38 4->5 0.35 * 0 to 6 (1.51) 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52 * 0 to 7 (0.60) 0->2 0.26 2->7 0.34 * * % java DijkstraSP mediumEWD.txt 0 * 0 to 0 (0.00) * 0 to 1 (0.71) 0->44 0.06 44->93 0.07 ... 107->1 0.07 * 0 to 2 (0.65) 0->44 0.06 44->231 0.10 ... 42->2 0.11 * 0 to 3 (0.46) 0->97 0.08 97->248 0.09 ... 45->3 0.12 * 0 to 4 (0.42) 0->44 0.06 44->93 0.07 ... 77->4 0.11 * ... * *************************************************************************/ /** * The DijkstraSP class represents a data type for solving the * single-source shortest paths problem in edge-weighted digraphs * where the edge weights are nonnegative. * * This implementation uses Dijkstra's algorithm with a binary heap. * The constructor takes time proportional to E log V , * where V is the number of vertices and E is the number of edges. * Afterwards, the distTo() and hasPathTo() methods take * constant time and the pathTo() method takes time proportional to the * number of edges in the shortest path returned. * * For additional documentation, see Section 4.4 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class DijkstraSP { private double[] distTo; // distTo[v] = distance of shortest s->v path private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path private IndexMinPQ pq; // priority queue of vertices /** * Computes a shortest paths tree from s to every other vertex in * the edge-weighted digraph G . * @param G the edge-weighted digraph * @param s the source vertex * @throws IllegalArgumentException if an edge weight is negative * @throws IllegalArgumentException unless 0 ≤ s ≤ V - 1 */ public DijkstraSP(EdgeWeightedDigraph G, int s) { for (DirectedEdge e : G.edges()) { if (e.weight() < 0) throw new IllegalArgumentException("edge " + e + " has negative weight"); } distTo = new double[G.V()]; edgeTo = new DirectedEdge[G.V()]; for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; distTo[s] = 0.0; // relax vertices in order of distance from s pq = new IndexMinPQ(G.V()); pq.insert(s, distTo[s]); while (!pq.isEmpty()) { int v = pq.delMin(); for (DirectedEdge e : G.adj(v)) relax(e); } // check optimality conditions assert check(G, s); } // relax edge e and update pq if changed private void relax(DirectedEdge e) { int v = e.from(), w = e.to(); if (distTo[w] > distTo[v] + e.weight()) { distTo[w] = distTo[v] + e.weight(); edgeTo[w] = e; if (pq.contains(w)) pq.decreaseKey(w, distTo[w]); else pq.insert(w, distTo[w]); } } /** * Returns the length of a shortest path from the source vertex s to vertex v . * @param v the destination vertex * @return the length of a shortest path from the source vertex s to vertex v ; * Double.POSITIVE_INFINITY if no such path */ public double distTo(int v) { return distTo[v]; } /** * Is there a path from the source vertex s to vertex v ? * @param v the destination vertex * @return true if there is a path from the source vertex * s to vertex v , and false otherwise */ public boolean hasPathTo(int v) { return distTo[v] < Double.POSITIVE_INFINITY; } /** * Returns a shortest path from the source vertex s to vertex v . * @param v the destination vertex * @return a shortest path from the source vertex s to vertex v * as an iterable of edges, and null if no such path */ public Iterable pathTo(int v) { if (!hasPathTo(v)) return null; Stack path = new Stack(); for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) { path.push(e); } return path; } // check optimality conditions: // (i) for all edges e: distTo[e.to()] <= distTo[e.from()] + e.weight() // (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight() private boolean check(EdgeWeightedDigraph G, int s) { // check that edge weights are nonnegative for (DirectedEdge e : G.edges()) { if (e.weight() < 0) { System.err.println("negative edge weight detected"); return false; } } // check that distTo[v] and edgeTo[v] are consistent if (distTo[s] != 0.0 || edgeTo[s] != null) { System.err.println("distTo[s] and edgeTo[s] inconsistent"); return false; } for (int v = 0; v < G.V(); v++) { if (v == s) continue; if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) { System.err.println("distTo[] and edgeTo[] inconsistent"); return false; } } // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight() for (int v = 0; v < G.V(); v++) { for (DirectedEdge e : G.adj(v)) { int w = e.to(); if (distTo[v] + e.weight() < distTo[w]) { System.err.println("edge " + e + " not relaxed"); return false; } } } // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight() for (int w = 0; w < G.V(); w++) { if (edgeTo[w] == null) continue; DirectedEdge e = edgeTo[w]; int v = e.from(); if (w != e.to()) return false; if (distTo[v] + e.weight() != distTo[w]) { System.err.println("edge " + e + " on shortest path not tight"); return false; } } return true; } /** * Unit tests the DijkstraSP data type. */ public static void main(String[] args) { In in = new In(args[0]); EdgeWeightedDigraph G = new EdgeWeightedDigraph(in); int s = Integer.parseInt(args[1]); // compute shortest paths DijkstraSP sp = new DijkstraSP(G, s); // print shortest path for (int t = 0; t < G.V(); t++) { if (sp.hasPathTo(t)) { StdOut.printf("%d to %d (%.2f) ", s, t, sp.distTo(t)); if (sp.hasPathTo(t)) { for (DirectedEdge e : sp.pathTo(t)) { StdOut.print(e + " "); } } StdOut.println(); } else { StdOut.printf("%d to %d no path\n", s, t); } } } }