#include #include #include using namespace std; // Number of components in the graph #define V 9 // A utility function to find the component with minimum distance value, from // the set of components not yet included in shortest path tree int minDistance(int dist[], bool sptSet[]) { // Initialize min value int min = INT_MAX, min_index; for (int v = 0; v < V; v++) if (sptSet[v] == false && dist[v] <= min) min = dist[v], min_index = v; return min_index; } // A utility function to print the constructed distance array void printSolution(int dist[], int n) { cout << "Component\tDistance from other component\n"; for (int i = 0; i < V; i++) printf("%d\t\t%d\n", i, dist[i]); } // Funtion that implements Dijkstra's single source shortest path algorithm // for a graph represented using adjacency matrix representation void optimizeLength(int graph[V][V], int src) { int dist[V]; // The output array. dist[i] will hold the shortest // distance from src to i bool sptSet[V]; // sptSet[i] will true if component i is included in shortest // path tree or shortest distance from src to i is finalized // Initialize all distances as INFINITE and stpSet[] as false for (int i = 0; i < V; i++) dist[i] = INT_MAX, sptSet[i] = false; // Distance of source component from itself is always 0 dist[src] = 0; // Find shortest path for all components for (int count = 0; count < V - 1; count++) { // Pick the minimum distance component from the set of components not // yet processed. u is always equal to src in first iteration. int u = minDistance(dist, sptSet); // Mark the picked component as processed sptSet[u] = true; // Update dist value of the adjacent components of the picked component. for (int v = 0; v < V; v++) // Update dist[v] only if is not in sptSet, there is an edge from // u to v, and total weight of path from src to v through u is // smaller than current value of dist[v] if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) dist[v] = dist[u] + graph[u][v]; } // print the constructed distance array printSolution(dist, V); } // driver program to test above function int main() { /* Let us create the example graph discussed above */ int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 }, { 4, 0, 8, 0, 0, 0, 0, 11, 0 }, { 0, 8, 0, 7, 0, 4, 0, 0, 2 }, { 0, 0, 7, 0, 9, 14, 0, 0, 0 }, { 0, 0, 0, 9, 0, 10, 0, 0, 0 }, { 0, 0, 4, 0, 10, 0, 2, 0, 0 }, { 0, 0, 0, 14, 0, 2, 0, 1, 6 }, { 8, 11, 0, 0, 0, 0, 1, 0, 7 }, { 0, 0, 2, 0, 0, 0, 6, 7, 0 } }; cout << "Enter the starting component: "; int s; cin >> s; optimizeLength(graph, s); return 0; } /* Enter the starting component: 1 Component Distance from other component 0 4 1 0 2 8 3 15 4 22 5 12 6 12 7 11 8 10 Enter the starting component: 6 Component Distance from other component 0 9 1 12 2 6 3 13 4 12 5 2 6 0 7 1 8 6