import edu.princeton.cs.introcs.StdOut; /************************************************************************* * Compilation: javac FordFulkerson.java * Execution: java FordFulkerson V E * Dependencies: FlowNetwork.java FlowEdge.java Queue.java * * Ford-Fulkerson algorithm for computing a max flow and * a min cut using shortest augmenting path rule. * *********************************************************************/ /** * The FordFulkerson class represents a data type for computing a * maximum st-flow and minimum st-cut in a flow * network. * * This implementation uses the Ford-Fulkerson algorithm with * the shortest augmenting path heuristic. * The constructor takes time proportional to E V ( E + V ) * in the worst case and extra space (not including the network) * proportional to V , where V is the number of vertices * and E is the number of edges. In practice, the algorithm will * run much faster. * Afterwards, the inCut() and value() methods take * constant time. * * If the capacities and initial flow values are all integers, then this * implementation guarantees to compute an integer-valued maximum flow. * If the capacities and floating-point numbers, then floating-point * roundoff error can accumulate. * * For additional documentation, see Section 6.4 * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class FordFulkerson { private boolean[] marked; // marked[v] = true iff s->v path in residual graph private FlowEdge[] edgeTo; // edgeTo[v] = last edge on shortest residual s->v path private double value; // current value of max flow /** * Compute a maximum flow and minimum cut in the network G * from vertex s to vertex t . * @param G the flow network * @param s the source vertex * @param t the sink vertex * @throws IndexOutOfBoundsException unless 0 <= s < V * @throws IndexOutOfBoundsException unless 0 <= t < V * @throws IllegalArgumentException if s = t * @throws IllegalArgumentException if initial flow is infeasible */ public FordFulkerson(FlowNetwork G, int s, int t) { if (s < 0 || s >= G.V()) { throw new IndexOutOfBoundsException("Source s is invalid: " + s); } if (t < 0 || t >= G.V()) { throw new IndexOutOfBoundsException("Sink t is invalid: " + t); } if (s == t) { throw new IllegalArgumentException("Source equals sink"); } value = excess(G, t); if (!isFeasible(G, s, t)) { throw new IllegalArgumentException("Initial flow is infeasible"); } // while there exists an augmenting path, use it while (hasAugmentingPath(G, s, t)) { // compute bottleneck capacity double bottle = Double.POSITIVE_INFINITY; for (int v = t; v != s; v = edgeTo[v].other(v)) { bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v)); } // augment flow for (int v = t; v != s; v = edgeTo[v].other(v)) { edgeTo[v].addResidualFlowTo(v, bottle); } value += bottle; } // check optimality conditions assert check(G, s, t); } /** * Returns the value of the maximum flow. * @return the value of the maximum flow */ public double value() { return value; } // is v in the s side of the min s-t cut? /** * Is vertex v on the s side of the minimum st-cut? * @return true if vertex v is on the s side of the micut, * and false if vertex v is on the t side. * @throws IndexOutOfBoundsException unless 0 <= v < V */ public boolean inCut(int v) { int V = marked.length; if (v < 0 || v >= V) throw new IndexOutOfBoundsException("vertex " + v + " is not between 0 and " + (V-1)); return marked[v]; } // is there an augmenting path? // if so, upon termination edgeTo[] will contain a parent-link representation of such a path private boolean hasAugmentingPath(FlowNetwork G, int s, int t) { edgeTo = new FlowEdge[G.V()]; marked = new boolean[G.V()]; // breadth-first search Queue q = new Queue(); q.enqueue(s); marked[s] = true; while (!q.isEmpty()) { int v = q.dequeue(); for (FlowEdge e : G.adj(v)) { int w = e.other(v); // if residual capacity from v to w if (e.residualCapacityTo(w) > 0) { if (!marked[w]) { edgeTo[w] = e; marked[w] = true; q.enqueue(w); } } } } // is there an augmenting path? return marked[t]; } // return excess flow at vertex v private double excess(FlowNetwork G, int v) { double excess = 0.0; for (FlowEdge e : G.adj(v)) { if (v == e.from()) excess -= e.flow(); else excess += e.flow(); } return excess; } // return excess flow at vertex v private boolean isFeasible(FlowNetwork G, int s, int t) { double EPSILON = 1E-11; // check that capacity constraints are satisfied for (int v = 0; v < G.V(); v++) { for (FlowEdge e : G.adj(v)) { if (e.flow() < -EPSILON || e.flow() > e.capacity() + EPSILON) { System.err.println("Edge does not satisfy capacity constraints: " + e); return false; } } } // check that net flow into a vertex equals zero, except at source and sink if (Math.abs(value + excess(G, s)) > EPSILON) { System.err.println("Excess at source = " + excess(G, s)); System.err.println("Max flow = " + value); return false; } if (Math.abs(value - excess(G, t)) > EPSILON) { System.err.println("Excess at sink = " + excess(G, t)); System.err.println("Max flow = " + value); return false; } for (int v = 0; v < G.V(); v++) { if (v == s || v == t) continue; else if (Math.abs(excess(G, v)) > EPSILON) { System.err.println("Net flow out of " + v + " doesn't equal zero"); return false; } } return true; } // check optimality conditions private boolean check(FlowNetwork G, int s, int t) { // check that flow is feasible if (!isFeasible(G, s, t)) { System.err.println("Flow is infeasible"); return false; } // check that s is on the source side of min cut and that t is not on source side if (!inCut(s)) { System.err.println("source " + s + " is not on source side of min cut"); return false; } if (inCut(t)) { System.err.println("sink " + t + " is on source side of min cut"); return false; } // check that value of min cut = value of max flow double mincutValue = 0.0; for (int v = 0; v < G.V(); v++) { for (FlowEdge e : G.adj(v)) { if ((v == e.from()) && inCut(e.from()) && !inCut(e.to())) mincutValue += e.capacity(); } } double EPSILON = 1E-11; if (Math.abs(mincutValue - value) > EPSILON) { System.err.println("Max flow value = " + value + ", min cut value = " + mincutValue); return false; } return true; } /** * Unit tests the FordFulkerson data type. */ public static void main(String[] args) { // create flow network with V vertices and E edges int V = Integer.parseInt(args[0]); int E = Integer.parseInt(args[1]); int s = 0, t = V-1; FlowNetwork G = new FlowNetwork(V, E); StdOut.println(G); // compute maximum flow and minimum cut FordFulkerson maxflow = new FordFulkerson(G, s, t); StdOut.println("Max flow from " + s + " to " + t); for (int v = 0; v < G.V(); v++) { for (FlowEdge e : G.adj(v)) { if ((v == e.from()) && e.flow() > 0) StdOut.println(" " + e); } } // print min-cut StdOut.print("Min cut: "); for (int v = 0; v < G.V(); v++) { if (maxflow.inCut(v)) StdOut.print(v + " "); } StdOut.println(); StdOut.println("Max flow value = " + maxflow.value()); } }