import edu.princeton.cs.introcs.In; import edu.princeton.cs.introcs.StdOut; /************************************************************************* * Compilation: javac DepthFirstOrder.java * Execution: java DepthFirstOrder filename.txt * Dependencies: Digraph.java Queue.java Stack.java StdOut.java * EdgeWeightedDigraph.java DirectedEdge.java * Data files: http://algs4.cs.princeton.edu/42directed/tinyDAG.txt * http://algs4.cs.princeton.edu/42directed/tinyDG.txt * * Compute preorder and postorder for a digraph or edge-weighted digraph. * Runs in O(E + V) time. * * % java DepthFirstOrder tinyDAG.txt * v pre post * -------------- * 0 0 8 * 1 3 2 * 2 9 10 * 3 10 9 * 4 2 0 * 5 1 1 * 6 4 7 * 7 11 11 * 8 12 12 * 9 5 6 * 10 8 5 * 11 6 4 * 12 7 3 * Preorder: 0 5 4 1 6 9 11 12 10 2 3 7 8 * Postorder: 4 5 1 12 11 10 9 6 0 3 2 7 8 * Reverse postorder: 8 7 2 3 0 6 9 10 11 12 1 5 4 * *************************************************************************/ /** * The DepthFirstOrder class represents a data type for * determining depth-first search ordering of the vertices in a digraph * or edge-weighted digraph, including preorder, postorder, and reverse postorder. * * This implementation uses depth-first search. * The constructor takes time proportional to V + E * (in the worst case), * where V is the number of vertices and E is the number of edges. * Afterwards, the preorder , postorder , and reverse postorder * operation takes take time proportional to V . * * * For additional documentation, see Section 4.2 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class DepthFirstOrder { private boolean[] marked; // marked[v] = has v been marked in dfs? private int[] pre; // pre[v] = preorder number of v private int[] post; // post[v] = postorder number of v private Queue preorder; // vertices in preorder private Queue postorder; // vertices in postorder private int preCounter; // counter or preorder numbering private int postCounter; // counter for postorder numbering /** * Determines a depth-first order for the digraph G . * @param G the digraph */ public DepthFirstOrder(Digraph G) { pre = new int[G.V()]; post = new int[G.V()]; postorder = new Queue(); preorder = new Queue(); marked = new boolean[G.V()]; for (int v = 0; v < G.V(); v++) if (!marked[v]) dfs(G, v); } /** * Determines a depth-first order for the edge-weighted digraph G . * @param G the edge-weighted digraph */ public DepthFirstOrder(EdgeWeightedDigraph G) { pre = new int[G.V()]; post = new int[G.V()]; postorder = new Queue(); preorder = new Queue(); marked = new boolean[G.V()]; for (int v = 0; v < G.V(); v++) if (!marked[v]) dfs(G, v); } // run DFS in digraph G from vertex v and compute preorder/postorder private void dfs(Digraph G, int v) { marked[v] = true; pre[v] = preCounter++; preorder.enqueue(v); for (int w : G.adj(v)) { if (!marked[w]) { dfs(G, w); } } postorder.enqueue(v); post[v] = postCounter++; } // run DFS in edge-weighted digraph G from vertex v and compute preorder/postorder private void dfs(EdgeWeightedDigraph G, int v) { marked[v] = true; pre[v] = preCounter++; preorder.enqueue(v); for (DirectedEdge e : G.adj(v)) { int w = e.to(); if (!marked[w]) { dfs(G, w); } } postorder.enqueue(v); post[v] = postCounter++; } /** * Returns the preorder number of vertex v . * @param v the vertex * @return the preorder number of vertex v */ public int pre(int v) { return pre[v]; } /** * Returns the postorder number of vertex v . * @param v the vertex * @return the postorder number of vertex v */ public int post(int v) { return post[v]; } /** * Returns the vertices in postorder. * @return the vertices in postorder, as an iterable of vertices */ public Iterable post() { return postorder; } /** * Returns the vertices in preorder. * @return the vertices in preorder, as an iterable of vertices */ public Iterable pre() { return preorder; } /** * Returns the vertices in reverse postorder. * @return the vertices in reverse postorder, as an iterable of vertices */ public Iterable reversePost() { Stack reverse = new Stack(); for (int v : postorder) reverse.push(v); return reverse; } // check that pre() and post() are consistent with pre(v) and post(v) private boolean check(Digraph G) { // check that post(v) is consistent with post() int r = 0; for (int v : post()) { if (post(v) != r) { StdOut.println("post(v) and post() inconsistent"); return false; } r++; } // check that pre(v) is consistent with pre() r = 0; for (int v : pre()) { if (pre(v) != r) { StdOut.println("pre(v) and pre() inconsistent"); return false; } r++; } return true; } /** * Unit tests the DepthFirstOrder data type. */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); DepthFirstOrder dfs = new DepthFirstOrder(G); StdOut.println(" v pre post"); StdOut.println("--------------"); for (int v = 0; v < G.V(); v++) { StdOut.printf("%4d %4d %4d\n", v, dfs.pre(v), dfs.post(v)); } StdOut.print("Preorder: "); for (int v : dfs.pre()) { StdOut.print(v + " "); } StdOut.println(); StdOut.print("Postorder: "); for (int v : dfs.post()) { StdOut.print(v + " "); } StdOut.println(); StdOut.print("Reverse postorder: "); for (int v : dfs.reversePost()) { StdOut.print(v + " "); } StdOut.println(); } }