import edu.princeton.cs.introcs.In; import edu.princeton.cs.introcs.StdOut; /************************************************************************* * Compilation: javac CC.java * Execution: java CC filename.txt * Dependencies: Graph.java StdOut.java Queue.java * Data files: http://algs4.cs.princeton.edu/41undirected/tinyG.txt * * Compute connected components using depth first search. * Runs in O(E + V) time. * * % java CC tinyG.txt * 3 components * 0 1 2 3 4 5 6 * 7 8 * 9 10 11 12 * * % java CC mediumG.txt * 1 components * 0 1 2 3 4 5 6 7 8 9 10 ... * * % java -Xss50m CC largeG.txt * 1 components * 0 1 2 3 4 5 6 7 8 9 10 ... * *************************************************************************/ /** * The CC class represents a data type for * determining the connected components in an undirected graph. * The id operation determines in which connected component * a given vertex lies; the areConnected operation * determines whether two vertices are in the same connected component; * the count operation determines the number of connected * components; and the size operation determines the number * of vertices in the connect component containing a given vertex. * The component identifier of a connected component is one of the * vertices in the connected component: two vertices have the same component * identifier if and only if they are in the same connected component. * * This implementation uses depth-first search. * The constructor takes time proportional to V + E * (in the worst case), * where V is the number of vertices and E is the number of edges. * Afterwards, the id , count , areConnected , * and size operations take constant time. * * For additional documentation, see Section 4.1 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class CC { private boolean[] marked; // marked[v] = has vertex v been marked? private int[] id; // id[v] = id of connected component containing v private int[] size; // size[id] = number of vertices in given component private int count; // number of connected components /** * Computes the connected components of the undirected graph G . * @param G the graph */ public CC(Graph G) { marked = new boolean[G.V()]; id = new int[G.V()]; size = new int[G.V()]; for (int v = 0; v < G.V(); v++) { if (!marked[v]) { dfs(G, v); count++; } } } // depth-first search private void dfs(Graph G, int v) { marked[v] = true; id[v] = count; size[count]++; for (int w : G.adj(v)) { if (!marked[w]) { dfs(G, w); } } } /** * Returns the component id of the connected component containing vertex v . * @param v the vertex * @return the component id of the connected component containing vertex v */ public int id(int v) { return id[v]; } /** * Returns the number of vertices in the connected component containing vertex v . * @param v the vertex * @return the number of vertices in the connected component containing vertex v */ public int size(int v) { return size[id[v]]; } /** * Returns the number of connected components. * @return the number of connected components */ public int count() { return count; } /** * Are vertices v and w in the same connected component? * @param v one vertex * @param w the other vertex * @return true if vertices v and w are in the same * connected component, and false otherwise */ public boolean areConnected(int v, int w) { return id(v) == id(w); } /** * Unit tests the CC data type. */ public static void main(String[] args) { In in = new In(args[0]); Graph G = new Graph(in); CC cc = new CC(G); // number of connected components int M = cc.count(); StdOut.println(M + " components"); // compute list of vertices in each connected component Queue[] components = (Queue[]) new Queue[M]; for (int i = 0; i < M; i++) { components[i] = new Queue(); } for (int v = 0; v < G.V(); v++) { components[cc.id(v)].enqueue(v); } // print results for (int i = 0; i < M; i++) { for (int v : components[i]) { StdOut.print(v + " "); } StdOut.println(); } } }