/*This Java program,to find the single source shortest path in directed acyclic graph by Dijkstra’s algorithm.Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.*/ import java.util.InputMismatchException; import java.util.Scanner; public class DijkstraShortestPath { private boolean settled[]; private boolean unsettled[]; private int distances[]; private int adjacencymatrix[][]; private int numberofvertices; public DijkstraShortestPath(int numberofvertices) { this.numberofvertices = numberofvertices; this.settled = new boolean[numberofvertices + 1]; this.unsettled = new boolean[numberofvertices + 1]; this.distances = new int[numberofvertices + 1]; this.adjacencymatrix = new int[numberofvertices + 1][numberofvertices + 1]; } public void dijkstraShortestPath(int source, int adjacencymatrix[][]) { int evaluationnode; for (int vertex = 1; vertex <= numberofvertices; vertex++) { distances[vertex] = Integer.MAX_VALUE; } for (int sourcevertex = 1; sourcevertex <= numberofvertices; sourcevertex++) { for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++) { this.adjacencymatrix[sourcevertex][destinationvertex] = adjacencymatrix[sourcevertex][destinationvertex]; } } unsettled[source] = true; distances[source] = 0; while (getUnsettledCount(unsettled) != 0) { evaluationnode = getNodeWithMinimumDistanceFromUnsettled(unsettled); unsettled[evaluationnode] = false; settled[evaluationnode] = true; evaluateNeighbours(evaluationnode); } } public int getUnsettledCount(boolean unsettled[]) { int count = 0; for (int vertex = 1; vertex <= numberofvertices; vertex++) { if (unsettled[vertex] == true) { count++; } } return count; } public int getNodeWithMinimumDistanceFromUnsettled(boolean unsettled[]) { int min = Integer.MAX_VALUE; int node = 0; for (int vertex = 1; vertex <= numberofvertices; vertex++) { if (unsettled[vertex] == true && distances[vertex] < min) { node = vertex; min = distances[vertex]; } } return node; } public void evaluateNeighbours(int evaluationNode) { int edgeDistance = -1; int newDistance = -1; for (int destinationNode = 1; destinationNode <= numberofvertices; destinationNode++) { if (settled[destinationNode] == false) { if (adjacencymatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE) { edgeDistance = adjacencymatrix[evaluationNode][destinationNode]; newDistance = distances[evaluationNode] + edgeDistance; if (newDistance < distances[destinationNode]) { distances[destinationNode] = newDistance; } unsettled[destinationNode] = true; } } } } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; int source = 0; Scanner scan = new Scanner(System.in); try { System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = Integer.MAX_VALUE; } } } System.out.println("Enter the source "); source = scan.nextInt(); DijkstraShortestPath dijkstrasAlgorithm = new DijkstraShortestPath(number_of_vertices); dijkstrasAlgorithm.dijkstraShortestPath(source, adjacency_matrix); System.out.println("The Shorted Path to all nodes are "); for (int i = 1; i <= dijkstrasAlgorithm.distances.length - 1; i++) { System.out.println(source + " to " + i + " is "+ dijkstrasAlgorithm.distances[i]); } } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input Format"); } scan.close(); } } /* Enter the number of vertices 5 Enter the Weighted Matrix for the graph 0 9 6 5 3 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 Enter the source 1 The Shorted Path to all nodes are 1 to 1 is 0 1 to 2 is 8 1 to 3 is 6 1 to 4 is 5 1 to 5 is 3