programming-examples/java/Numerical_Problems/Java Program to Implement Extended Euclid Algorithm.java

59 lines
1.8 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*
Java Program to Implement Extended Euclid Algorithm
This is a Java Program to Implement Extended Euclid Algorithm. The extended Euclidean algorithm is an extension to the Euclidean algorithm. Besides finding the greatest common divisor of integers a and b, as the Euclidean algorithm does, it also finds integers x and y (one of which is typically negative) that satisfy Bézouts identity
ax + by = gcd(a, b).
*/
/**
** Java Program to implement Extended Euclid Algorithm
**/
import java.util.Scanner;
/** Class ExtendedEuclid **/
public class ExtendedEuclid
{
/** Function to solve **/
public void solve(long a, long b)
{
long x = 0, y = 1, lastx = 1, lasty = 0, temp;
while (b != 0)
{
long q = a / b;
long r = a % b;
a = b;
b = r;
temp = x;
x = lastx - q * x;
lastx = temp;
temp = y;
y = lasty - q * y;
lasty = temp;
}
System.out.println("Roots x : "+ lastx +" y :"+ lasty);
}
/** Main function **/
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Extended Euclid Algorithm Test\n");
/** Make an object of ExtendedEuclid class **/
ExtendedEuclid ee = new ExtendedEuclid();
/** Accept two integers **/
System.out.println("Enter a b of ax + by = gcd(a, b)\n");
long a = scan.nextLong();
long b = scan.nextLong();
/** Call function solve of class ExtendedEuclid **/
ee.solve(a, b);
}
}
/*
Enter a b of ax + by = gcd(a, b)
120 23
Roots x : -9 y :47