programming-examples/java/Graph_Problems_Algorithms/Johnson.java

86 lines
4.0 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
package com.jwetherell.algorithms.graph;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import com.jwetherell.algorithms.data_structures.Graph;
/**
* Johnson's algorithm is a way to find the shortest paths between all pairs of
* vertices in a sparse directed graph. It allows some of the edge weights to be
* negative numbers, but no negative-weight cycles may exist.
*
* Worst case: O(V^2 log V + VE)
*
* https://en.wikipedia.org/wiki/Johnson%27s_algorithm
*
* @author Justin Wetherell <phishman3579@gmail.com>
*/
public class Johnson {
private Johnson() { }
public static Map<Graph.Vertex<Integer>, Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>> getAllPairsShortestPaths(Graph<Integer> g) {
if (g == null)
throw (new NullPointerException("Graph must be non-NULL."));
// First, a new node 'connector' is added to the graph, connected by zero-weight edges to each of the other nodes.
final Graph<Integer> graph = new Graph<Integer>(g);
final Graph.Vertex<Integer> connector = new Graph.Vertex<Integer>(Integer.MAX_VALUE);
// Add the connector Vertex to all edges.
for (Graph.Vertex<Integer> v : graph.getVertices()) {
final int indexOfV = graph.getVertices().indexOf(v);
final Graph.Edge<Integer> edge = new Graph.Edge<Integer>(0, connector, graph.getVertices().get(indexOfV));
connector.addEdge(edge);
graph.getEdges().add(edge);
}
graph.getVertices().add(connector);
// Second, the BellmanFord algorithm is used, starting from the new vertex 'connector', to find for each vertex 'v'
// the minimum weight h(v) of a path from 'connector' to 'v'. If this step detects a negative cycle, the algorithm is terminated.
final Map<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>> costs = BellmanFord.getShortestPaths(graph, connector);
// Next the edges of the original graph are re-weighted using the values computed by the BellmanFord algorithm: an edge
// from u to v, having length w(u,v), is given the new length w(u,v) + h(u) h(v).
for (Graph.Edge<Integer> e : graph.getEdges()) {
final int weight = e.getCost();
final Graph.Vertex<Integer> u = e.getFromVertex();
final Graph.Vertex<Integer> v = e.getToVertex();
// Don't worry about the connector
if (u.equals(connector) || v.equals(connector))
continue;
// Adjust the costs
final int uCost = costs.get(u).getCost();
final int vCost = costs.get(v).getCost();
final int newWeight = weight + uCost - vCost;
e.setCost(newWeight);
}
// Finally, 'connector' is removed, and Dijkstra's algorithm is used to find the shortest paths from each node (s) to every
// other vertex in the re-weighted graph.
final int indexOfConnector = graph.getVertices().indexOf(connector);
graph.getVertices().remove(indexOfConnector);
for (Graph.Edge<Integer> e : connector.getEdges()) {
final int indexOfConnectorEdge = graph.getEdges().indexOf(e);
graph.getEdges().remove(indexOfConnectorEdge);
}
final Map<Graph.Vertex<Integer>, Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>> allShortestPaths = new HashMap<Graph.Vertex<Integer>, Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>>();
for (Graph.Vertex<Integer> v : graph.getVertices()) {
final Map<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>> costPaths = Dijkstra.getShortestPaths(graph, v);
final Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths = new HashMap<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>();
for (Graph.Vertex<Integer> v2 : costPaths.keySet()) {
final Graph.CostPathPair<Integer> pair = costPaths.get(v2);
paths.put(v2, pair.getPath());
}
allShortestPaths.put(v, paths);
}
return allShortestPaths;
}
}