programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Max-Flow Min-Cut Theorem.java

197 lines
6.5 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program is to Implement Max Flow Min Cut theorem. In optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the minimum capacity that when removed in a specific way from the network causes the situation that no flow can pass from the source to the sink.*/
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Set;
public class MaxFlowMinCut
{
private int[] parent;
private Queue<Integer> queue;
private int numberOfVertices;
private boolean[] visited;
private Set<Pair> cutSet;
private ArrayList<Integer> reachable;
private ArrayList<Integer> unreachable;
public MaxFlowMinCut (int numberOfVertices)
{
this.numberOfVertices = numberOfVertices;
this.queue = new LinkedList<Integer>();
parent = new int[numberOfVertices + 1];
visited = new boolean[numberOfVertices + 1];
cutSet = new HashSet<Pair>();
reachable = new ArrayList<Integer>();
unreachable = new ArrayList<Integer>();
}
public boolean bfs (int source, int goal, int graph[][])
{
boolean pathFound = false;
int destination, element;
for (int vertex = 1; vertex <= numberOfVertices; vertex++)
{
parent[vertex] = -1;
visited[vertex] = false;
}
queue.add(source);
parent[source] = -1;
visited[source] = true;
while (!queue.isEmpty())
{
element = queue.remove();
destination = 1;
while (destination <= numberOfVertices)
{
if (graph[element][destination] > 0 && !visited[destination])
{
parent[destination] = element;
queue.add(destination);
visited[destination] = true;
}
destination++;
}
}
if (visited[goal])
{
pathFound = true;
}
return pathFound;
}
public int maxFlowMinCut (int graph[][], int source, int destination)
{
int u, v;
int maxFlow = 0;
int pathFlow;
int[][] residualGraph = new int[numberOfVertices + 1][numberOfVertices + 1];
for (int sourceVertex = 1; sourceVertex <= numberOfVertices; sourceVertex++)
{
for (int destinationVertex = 1; destinationVertex <= numberOfVertices; destinationVertex++)
{
residualGraph[sourceVertex][destinationVertex] = graph[sourceVertex][destinationVertex];
}
}
/*max flow*/
while (bfs(source, destination, residualGraph))
{
pathFlow = Integer.MAX_VALUE;
for (v = destination; v != source; v = parent[v])
{
u = parent[v];
pathFlow = Math.min(pathFlow,residualGraph[u][v]);
}
for (v = destination; v != source; v = parent[v])
{
u = parent[v];
residualGraph[u][v] -= pathFlow;
residualGraph[v][u] += pathFlow;
}
maxFlow += pathFlow;
}
/*calculate the cut set*/
for (int vertex = 1; vertex <= numberOfVertices; vertex++)
{
if (bfs(source, vertex, residualGraph))
{
reachable.add(vertex);
}
else
{
unreachable.add(vertex);
}
}
for (int i = 0; i < reachable.size(); i++)
{
for (int j = 0; j < unreachable.size(); j++)
{
if (graph[reachable.get(i)][unreachable.get(j)] > 0)
{
cutSet.add(new Pair(reachable.get(i), unreachable.get(j)));
}
}
}
return maxFlow;
}
public void printCutSet ()
{
Iterator<Pair> iterator = cutSet.iterator();
while (iterator.hasNext())
{
Pair pair = iterator.next();
System.out.println(pair.source + "-" + pair.destination);
}
}
public static void main (String...arg)
{
int[][] graph;
int numberOfNodes;
int source;
int sink;
int maxFlow;
Scanner scanner = new Scanner(System.in);
System.out.println("Enter the number of nodes");
numberOfNodes = scanner.nextInt();
graph = new int[numberOfNodes + 1][numberOfNodes + 1];
System.out.println("Enter the graph matrix");
for (int sourceVertex = 1; sourceVertex <= numberOfNodes; sourceVertex++)
{
for (int destinationVertex = 1; destinationVertex <= numberOfNodes ; destinationVertex++)
{
graph[sourceVertex][destinationVertex] = scanner.nextInt();
}
}
System.out.println("Enter the source of the graph");
source= scanner.nextInt();
System.out.println("Enter the sink of the graph");
sink = scanner.nextInt();
MaxFlowMinCut maxFlowMinCut = new MaxFlowMinCut(numberOfNodes);
maxFlow = maxFlowMinCut.maxFlowMinCut(graph, source, sink);
System.out.println("The Max Flow is " + maxFlow);
System.out.println("The Cut Set is ");
maxFlowMinCut.printCutSet();
scanner.close();
}
}
class Pair
{
public int source;
public int destination;
public Pair (int source, int destination)
{
this.source = source;
this.destination = destination;
}
public Pair()
{
}
}
/*
Enter the number of nodes
6
Enter the graph matrix
0 16 13 0 0 0
0 0 10 12 0 0
0 4 0 0 14 0
0 0 9 0 0 20
0 0 0 7 0 4
0 0 0 0 0 0
Enter the source of the graph
1
Enter the sink of the graph
6
The Max Flow is 23
The Cut Set is
5-4
5-6
2-4