programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Hopcroft Algorithm.java

139 lines
4.0 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a Java Program to Implement Hopcroft Karp Algorithm. The HopcroftKarp algorithm is an algorithm that takes as input a bipartite graph and produces as output a maximum cardinality matching a set of as many edges as possible with the property that no two edges share an endpoint.*/
/**
** Java Program to Implement Hopcroft Algorithm
**/
import java.util.*;
/** Class Hopcroft **/
public class Hopcroft
{
private final int NIL = 0;
private final int INF = Integer.MAX_VALUE;
private ArrayList<Integer>[] Adj;
private int[] Pair;
private int[] Dist;
private int cx, cy;
/** Function BFS **/
public boolean BFS()
{
Queue<Integer> queue = new LinkedList<Integer>();
for (int v = 1; v <= cx; ++v)
if (Pair[v] == NIL)
{
Dist[v] = 0;
queue.add(v);
}
else
Dist[v] = INF;
Dist[NIL] = INF;
while (!queue.isEmpty())
{
int v = queue.poll();
if (Dist[v] < Dist[NIL])
for (int u : Adj[v])
if (Dist[Pair[u]] == INF)
{
Dist[Pair[u]] = Dist[v] + 1;
queue.add(Pair[u]);
}
}
return Dist[NIL] != INF;
}
/** Function DFS **/
public boolean DFS(int v)
{
if (v != NIL)
{
for (int u : Adj[v])
if (Dist[Pair[u]] == Dist[v] + 1)
if (DFS(Pair[u]))
{
Pair[u] = v;
Pair[v] = u;
return true;
}
Dist[v] = INF;
return false;
}
return true;
}
/** Function to get maximum matching **/
public int HopcroftKarp()
{
Pair = new int[cx + cy + 1];
Dist = new int[cx + cy + 1];
int matching = 0;
while (BFS())
for (int v = 1; v <= cx; ++v)
if (Pair[v] == NIL)
if (DFS(v))
matching = matching + 1;
return matching;
}
/** Function to make graph with vertices x , y **/
public void makeGraph(int[] x, int[] y, int E)
{
Adj = new ArrayList[cx + cy + 1];
for (int i = 0; i < Adj.length; ++i)
Adj[i] = new ArrayList<Integer>();
/** adding edges **/
for (int i = 0; i < E; ++i)
addEdge(x[i] + 1, y[i] + 1);
}
/** Function to add a edge **/
public void addEdge(int u, int v)
{
Adj[u].add(cx + v);
Adj[cx + v].add(u);
}
/** Main Method **/
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Hopcroft Algorithm Test\n");
/** Make an object of Hopcroft class **/
Hopcroft hc = new Hopcroft();
/** Accept number of edges **/
System.out.println("Enter number of edges\n");
int E = scan.nextInt();
int[] x = new int[E];
int[] y = new int[E];
hc.cx = 0;
hc.cy = 0;
System.out.println("Enter "+ E +" x, y coordinates ");
for (int i = 0; i < E; i++)
{
x[i] = scan.nextInt();
y[i] = scan.nextInt();
hc.cx = Math.max(hc.cx, x[i]);
hc.cy = Math.max(hc.cy, y[i]);
}
hc.cx += 1;
hc.cy += 1;
/** make graph with vertices **/
hc.makeGraph(x, y, E);
System.out.println("\nMatches : "+ hc.HopcroftKarp());
}
}
/*
Enter number of edges
11
Enter 11 x, y coordinates
0 0
0 3
1 0
1 2
1 4
2 1
3 0
3 2
3 3
3 4
4 2
Matches : 5