programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Dijkstra’s Algorithm using Queue.java

154 lines
5.5 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program,to Implement Dijkstras algorithm using Queue.Dijkstras algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.*/
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Set;
public class DijkstraQueue
{
private int distances[];
private Queue<Integer> queue;
private Set<Integer> settled;
private int number_of_nodes;
private int adjacencyMatrix[][];
public DijkstraQueue(int number_of_nodes)
{
this.number_of_nodes = number_of_nodes;
distances = new int[number_of_nodes + 1];
settled = new HashSet<Integer>();
queue = new LinkedList<Integer>();
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
}
public void dijkstra_algorithm(int adjacency_matrix[][], int source)
{
int evaluationNode;
for (int i = 1; i <= number_of_nodes; i++)
for (int j = 1; j <= number_of_nodes; j++)
adjacencyMatrix[i][j] = adjacency_matrix[i][j];
for (int i = 1; i <= number_of_nodes; i++)
{
distances[i] = Integer.MAX_VALUE;
}
queue.add(source);
distances[source] = 0;
while (!queue.isEmpty())
{
evaluationNode = getNodeWithMinimumDistanceFromQueue();
settled.add(evaluationNode);
evaluateNeighbours(evaluationNode);
}
}
private int getNodeWithMinimumDistanceFromQueue()
{
int min ;
int node = 0;
Iterator<Integer> iterator = queue.iterator();
node = iterator.next();
min = distances[node];
for (int i = 1; i <= distances.length; i++)
{
if (queue.contains(i))
{
if (distances[i] <= min)
{
min = distances[i];
node = i;
}
}
}
queue.remove(node);
return node;
}
private void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
{
if (!settled.contains(destinationNode))
{
if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
{
edgeDistance = adjacencyMatrix[evaluationNode][destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
}
queue.add(destinationNode);
}
}
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int source = 0;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = Integer.MAX_VALUE;
}
}
}
System.out.println("Enter the source ");
source = scan.nextInt();
DijkstraQueue dijkstrasQueue = new DijkstraQueue(number_of_vertices);
dijkstrasQueue.dijkstra_algorithm(adjacency_matrix, source);
System.out.println("The Shorted Path to all nodes are ");
for (int i = 1; i <= dijkstrasQueue.distances.length - 1; i++)
{
System.out.println(source + " to " + i + " is " + dijkstrasQueue.distances[i]);
}
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
/*
Enter the number of vertices
5
Enter the Weighted Matrix for the graph
0 7 0 0 2
0 0 1 0 2
0 0 0 4 0
0 0 5 0 0
0 3 8 5 0
Enter the source
1
The Shorted Path to all nodes are
1 to 1 is 0
1 to 2 is 5
1 to 3 is 6
1 to 4 is 7
1 to 5 is 2