154 lines
5.5 KiB
Java
154 lines
5.5 KiB
Java
|
/*This Java program,to Implement Dijkstra’s algorithm using Queue.Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.*/
|
|||
|
|
|||
|
import java.util.HashSet;
|
|||
|
import java.util.InputMismatchException;
|
|||
|
import java.util.LinkedList;
|
|||
|
import java.util.Queue;
|
|||
|
import java.util.Scanner;
|
|||
|
import java.util.Set;
|
|||
|
|
|||
|
public class DijkstraQueue
|
|||
|
{
|
|||
|
private int distances[];
|
|||
|
private Queue<Integer> queue;
|
|||
|
private Set<Integer> settled;
|
|||
|
private int number_of_nodes;
|
|||
|
private int adjacencyMatrix[][];
|
|||
|
|
|||
|
public DijkstraQueue(int number_of_nodes)
|
|||
|
{
|
|||
|
this.number_of_nodes = number_of_nodes;
|
|||
|
distances = new int[number_of_nodes + 1];
|
|||
|
settled = new HashSet<Integer>();
|
|||
|
queue = new LinkedList<Integer>();
|
|||
|
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
|
|||
|
}
|
|||
|
|
|||
|
public void dijkstra_algorithm(int adjacency_matrix[][], int source)
|
|||
|
{
|
|||
|
int evaluationNode;
|
|||
|
for (int i = 1; i <= number_of_nodes; i++)
|
|||
|
for (int j = 1; j <= number_of_nodes; j++)
|
|||
|
adjacencyMatrix[i][j] = adjacency_matrix[i][j];
|
|||
|
for (int i = 1; i <= number_of_nodes; i++)
|
|||
|
{
|
|||
|
distances[i] = Integer.MAX_VALUE;
|
|||
|
}
|
|||
|
queue.add(source);
|
|||
|
distances[source] = 0;
|
|||
|
while (!queue.isEmpty())
|
|||
|
{
|
|||
|
evaluationNode = getNodeWithMinimumDistanceFromQueue();
|
|||
|
settled.add(evaluationNode);
|
|||
|
evaluateNeighbours(evaluationNode);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
private int getNodeWithMinimumDistanceFromQueue()
|
|||
|
{
|
|||
|
int min ;
|
|||
|
int node = 0;
|
|||
|
Iterator<Integer> iterator = queue.iterator();
|
|||
|
node = iterator.next();
|
|||
|
min = distances[node];
|
|||
|
for (int i = 1; i <= distances.length; i++)
|
|||
|
{
|
|||
|
if (queue.contains(i))
|
|||
|
{
|
|||
|
if (distances[i] <= min)
|
|||
|
{
|
|||
|
min = distances[i];
|
|||
|
node = i;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
queue.remove(node);
|
|||
|
return node;
|
|||
|
}
|
|||
|
|
|||
|
private void evaluateNeighbours(int evaluationNode)
|
|||
|
{
|
|||
|
int edgeDistance = -1;
|
|||
|
int newDistance = -1;
|
|||
|
for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
|
|||
|
{
|
|||
|
if (!settled.contains(destinationNode))
|
|||
|
{
|
|||
|
if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
|
|||
|
{
|
|||
|
edgeDistance = adjacencyMatrix[evaluationNode][destinationNode];
|
|||
|
newDistance = distances[evaluationNode] + edgeDistance;
|
|||
|
if (newDistance < distances[destinationNode])
|
|||
|
{
|
|||
|
distances[destinationNode] = newDistance;
|
|||
|
}
|
|||
|
queue.add(destinationNode);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static void main(String... arg)
|
|||
|
{
|
|||
|
int adjacency_matrix[][];
|
|||
|
int number_of_vertices;
|
|||
|
int source = 0;
|
|||
|
Scanner scan = new Scanner(System.in);
|
|||
|
try
|
|||
|
{
|
|||
|
System.out.println("Enter the number of vertices");
|
|||
|
number_of_vertices = scan.nextInt();
|
|||
|
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
|
|||
|
System.out.println("Enter the Weighted Matrix for the graph");
|
|||
|
for (int i = 1; i <= number_of_vertices; i++)
|
|||
|
{
|
|||
|
for (int j = 1; j <= number_of_vertices; j++)
|
|||
|
{
|
|||
|
adjacency_matrix[i][j] = scan.nextInt();
|
|||
|
if (i == j)
|
|||
|
{
|
|||
|
adjacency_matrix[i][j] = 0;
|
|||
|
continue;
|
|||
|
}
|
|||
|
if (adjacency_matrix[i][j] == 0)
|
|||
|
{
|
|||
|
adjacency_matrix[i][j] = Integer.MAX_VALUE;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
System.out.println("Enter the source ");
|
|||
|
source = scan.nextInt();
|
|||
|
DijkstraQueue dijkstrasQueue = new DijkstraQueue(number_of_vertices);
|
|||
|
dijkstrasQueue.dijkstra_algorithm(adjacency_matrix, source);
|
|||
|
System.out.println("The Shorted Path to all nodes are ");
|
|||
|
for (int i = 1; i <= dijkstrasQueue.distances.length - 1; i++)
|
|||
|
{
|
|||
|
System.out.println(source + " to " + i + " is " + dijkstrasQueue.distances[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
catch (InputMismatchException inputMismatch)
|
|||
|
{
|
|||
|
System.out.println("Wrong Input Format");
|
|||
|
}
|
|||
|
scan.close();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
Enter the number of vertices
|
|||
|
5
|
|||
|
Enter the Weighted Matrix for the graph
|
|||
|
0 7 0 0 2
|
|||
|
0 0 1 0 2
|
|||
|
0 0 0 4 0
|
|||
|
0 0 5 0 0
|
|||
|
0 3 8 5 0
|
|||
|
Enter the source
|
|||
|
1
|
|||
|
The Shorted Path to all nodes are
|
|||
|
1 to 1 is 0
|
|||
|
1 to 2 is 5
|
|||
|
1 to 3 is 6
|
|||
|
1 to 4 is 7
|
|||
|
1 to 5 is 2
|