33 lines
1.1 KiB
Java
33 lines
1.1 KiB
Java
|
/*This Java program is to find the number of spanning trees in a Complete Bipartite graph. This can be calculated using the matrix tree theorem or Cayley’s formula.*/
|
|||
|
|
|||
|
import java.util.Scanner;
|
|||
|
|
|||
|
public class NumOfSpanningBipartite
|
|||
|
{
|
|||
|
private int firstSetSize;
|
|||
|
private int secondSetSize;
|
|||
|
|
|||
|
public int numberOfSpanningTree(int firstSetSize, int secondSetSize)
|
|||
|
{
|
|||
|
this.firstSetSize = firstSetSize;
|
|||
|
this.secondSetSize = secondSetSize;
|
|||
|
return (this.firstSetSize^(this.secondSetSize - 1)) *(this.secondSetSize ^ (this.firstSetSize -1));
|
|||
|
}
|
|||
|
|
|||
|
public static void main(String...arg)
|
|||
|
{
|
|||
|
int m, n;
|
|||
|
Scanner scanner = new Scanner(System.in);
|
|||
|
System.out.println("enter the size of the bipartite graph (m and n)");
|
|||
|
m = scanner.nextInt();
|
|||
|
n = scanner.nextInt();
|
|||
|
NumOfSpanningBipartite bipartite = new NumOfSpanningBipartite();
|
|||
|
System.out.println(" the number of spanning trees are " + bipartite.numberOfSpanningTree(m, n));
|
|||
|
scanner.close();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
enter the size of the bipartite graph (m and n)
|
|||
|
2 2
|
|||
|
the number of spanning trees are 9
|