programming-examples/java/Graph_Problems_Algorithms/Java Program to Find MST(Minimum Spanning Tree) using Prim’s Algorithm.java

160 lines
5.9 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program is to find MST using Prims algorithm.In computer science, Prims algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.*/
import java.util.InputMismatchException;
import java.util.Scanner;
public class Prims
{
private boolean unsettled[];
private boolean settled[];
private int numberofvertices;
private int adjacencyMatrix[][];
private int key[];
public static final int INFINITE = 999;
private int parent[];
public Prims(int numberofvertices)
{
this.numberofvertices = numberofvertices;
unsettled = new boolean[numberofvertices + 1];
settled = new boolean[numberofvertices + 1];
adjacencyMatrix = new int[numberofvertices + 1][numberofvertices + 1];
key = new int[numberofvertices + 1];
parent = new int[numberofvertices + 1];
}
public int getUnsettledCount(boolean unsettled[])
{
int count = 0;
for (int index = 0; index < unsettled.length; index++)
{
if (unsettled[index])
{
count++;
}
}
return count;
}
public void primsAlgorithm(int adjacencyMatrix[][])
{
int evaluationVertex;
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
this.adjacencyMatrix[source][destination] = adjacencyMatrix[source][destination];
}
}
for (int index = 1; index <= numberofvertices; index++)
{
key[index] = INFINITE;
}
key[1] = 0;
unsettled[1] = true;
parent[1] = 1;
while (getUnsettledCount(unsettled) != 0)
{
evaluationVertex = getMimumKeyVertexFromUnsettled(unsettled);
unsettled[evaluationVertex] = false;
settled[evaluationVertex] = true;
evaluateNeighbours(evaluationVertex);
}
}
private int getMimumKeyVertexFromUnsettled(boolean[] unsettled2)
{
int min = Integer.MAX_VALUE;
int node = 0;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
if (unsettled[vertex] == true && key[vertex] < min)
{
node = vertex;
min = key[vertex];
}
}
return node;
}
public void evaluateNeighbours(int evaluationVertex)
{
for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++)
{
if (settled[destinationvertex] == false)
{
if (adjacencyMatrix[evaluationVertex][destinationvertex] != INFINITE)
{
if (adjacencyMatrix[evaluationVertex][destinationvertex] < key[destinationvertex])
{
key[destinationvertex] = adjacencyMatrix[evaluationVertex][destinationvertex];
parent[destinationvertex] = evaluationVertex;
}
unsettled[destinationvertex] = true;
}
}
}
}
public void printMST()
{
System.out.println("SOURCE : DESTINATION = WEIGHT");
for (int vertex = 2; vertex <= numberofvertices; vertex++)
{
System.out.println(parent[vertex] + "\t:\t" + vertex +"\t=\t"+ adjacencyMatrix[parent[vertex]][vertex]);
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = INFINITE;
}
}
}
Prims prims = new Prims(number_of_vertices);
prims.primsAlgorithm(adjacency_matrix);
prims.printMST();
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
/*
Enter the number of vertices
5
Enter the Weighted Matrix for the graph
0 4 0 0 5
4 0 3 6 1
0 3 0 6 2
0 6 6 0 7
5 1 2 7 0
SOURCE : DESTINATION = WEIGHT
1 : 2 = 4
5 : 3 = 2
2 : 4 = 6
2 : 5 = 1