160 lines
5.9 KiB
Java
160 lines
5.9 KiB
Java
|
/*This Java program is to find MST using Prim’s algorithm.In computer science, Prim’s algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.*/
|
|||
|
|
|||
|
import java.util.InputMismatchException;
|
|||
|
import java.util.Scanner;
|
|||
|
|
|||
|
public class Prims
|
|||
|
{
|
|||
|
private boolean unsettled[];
|
|||
|
private boolean settled[];
|
|||
|
private int numberofvertices;
|
|||
|
private int adjacencyMatrix[][];
|
|||
|
private int key[];
|
|||
|
public static final int INFINITE = 999;
|
|||
|
private int parent[];
|
|||
|
|
|||
|
public Prims(int numberofvertices)
|
|||
|
{
|
|||
|
this.numberofvertices = numberofvertices;
|
|||
|
unsettled = new boolean[numberofvertices + 1];
|
|||
|
settled = new boolean[numberofvertices + 1];
|
|||
|
adjacencyMatrix = new int[numberofvertices + 1][numberofvertices + 1];
|
|||
|
key = new int[numberofvertices + 1];
|
|||
|
parent = new int[numberofvertices + 1];
|
|||
|
}
|
|||
|
|
|||
|
public int getUnsettledCount(boolean unsettled[])
|
|||
|
{
|
|||
|
int count = 0;
|
|||
|
for (int index = 0; index < unsettled.length; index++)
|
|||
|
{
|
|||
|
if (unsettled[index])
|
|||
|
{
|
|||
|
count++;
|
|||
|
}
|
|||
|
}
|
|||
|
return count;
|
|||
|
}
|
|||
|
|
|||
|
public void primsAlgorithm(int adjacencyMatrix[][])
|
|||
|
{
|
|||
|
int evaluationVertex;
|
|||
|
for (int source = 1; source <= numberofvertices; source++)
|
|||
|
{
|
|||
|
for (int destination = 1; destination <= numberofvertices; destination++)
|
|||
|
{
|
|||
|
this.adjacencyMatrix[source][destination] = adjacencyMatrix[source][destination];
|
|||
|
}
|
|||
|
}
|
|||
|
for (int index = 1; index <= numberofvertices; index++)
|
|||
|
{
|
|||
|
key[index] = INFINITE;
|
|||
|
}
|
|||
|
key[1] = 0;
|
|||
|
unsettled[1] = true;
|
|||
|
parent[1] = 1;
|
|||
|
while (getUnsettledCount(unsettled) != 0)
|
|||
|
{
|
|||
|
evaluationVertex = getMimumKeyVertexFromUnsettled(unsettled);
|
|||
|
unsettled[evaluationVertex] = false;
|
|||
|
settled[evaluationVertex] = true;
|
|||
|
evaluateNeighbours(evaluationVertex);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
private int getMimumKeyVertexFromUnsettled(boolean[] unsettled2)
|
|||
|
{
|
|||
|
int min = Integer.MAX_VALUE;
|
|||
|
int node = 0;
|
|||
|
for (int vertex = 1; vertex <= numberofvertices; vertex++)
|
|||
|
{
|
|||
|
if (unsettled[vertex] == true && key[vertex] < min)
|
|||
|
{
|
|||
|
node = vertex;
|
|||
|
min = key[vertex];
|
|||
|
}
|
|||
|
}
|
|||
|
return node;
|
|||
|
}
|
|||
|
|
|||
|
public void evaluateNeighbours(int evaluationVertex)
|
|||
|
{
|
|||
|
for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++)
|
|||
|
{
|
|||
|
if (settled[destinationvertex] == false)
|
|||
|
{
|
|||
|
if (adjacencyMatrix[evaluationVertex][destinationvertex] != INFINITE)
|
|||
|
{
|
|||
|
if (adjacencyMatrix[evaluationVertex][destinationvertex] < key[destinationvertex])
|
|||
|
{
|
|||
|
key[destinationvertex] = adjacencyMatrix[evaluationVertex][destinationvertex];
|
|||
|
parent[destinationvertex] = evaluationVertex;
|
|||
|
}
|
|||
|
unsettled[destinationvertex] = true;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public void printMST()
|
|||
|
{
|
|||
|
System.out.println("SOURCE : DESTINATION = WEIGHT");
|
|||
|
for (int vertex = 2; vertex <= numberofvertices; vertex++)
|
|||
|
{
|
|||
|
System.out.println(parent[vertex] + "\t:\t" + vertex +"\t=\t"+ adjacencyMatrix[parent[vertex]][vertex]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static void main(String... arg)
|
|||
|
{
|
|||
|
int adjacency_matrix[][];
|
|||
|
int number_of_vertices;
|
|||
|
Scanner scan = new Scanner(System.in);
|
|||
|
try
|
|||
|
{
|
|||
|
System.out.println("Enter the number of vertices");
|
|||
|
number_of_vertices = scan.nextInt();
|
|||
|
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
|
|||
|
System.out.println("Enter the Weighted Matrix for the graph");
|
|||
|
for (int i = 1; i <= number_of_vertices; i++)
|
|||
|
{
|
|||
|
for (int j = 1; j <= number_of_vertices; j++)
|
|||
|
{
|
|||
|
adjacency_matrix[i][j] = scan.nextInt();
|
|||
|
if (i == j)
|
|||
|
{
|
|||
|
adjacency_matrix[i][j] = 0;
|
|||
|
continue;
|
|||
|
}
|
|||
|
if (adjacency_matrix[i][j] == 0)
|
|||
|
{
|
|||
|
adjacency_matrix[i][j] = INFINITE;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
Prims prims = new Prims(number_of_vertices);
|
|||
|
prims.primsAlgorithm(adjacency_matrix);
|
|||
|
prims.printMST();
|
|||
|
}
|
|||
|
catch (InputMismatchException inputMismatch)
|
|||
|
{
|
|||
|
System.out.println("Wrong Input Format");
|
|||
|
}
|
|||
|
scan.close();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
Enter the number of vertices
|
|||
|
5
|
|||
|
Enter the Weighted Matrix for the graph
|
|||
|
0 4 0 0 5
|
|||
|
4 0 3 6 1
|
|||
|
0 3 0 6 2
|
|||
|
0 6 6 0 7
|
|||
|
5 1 2 7 0
|
|||
|
SOURCE : DESTINATION = WEIGHT
|
|||
|
1 : 2 = 4
|
|||
|
5 : 3 = 2
|
|||
|
2 : 4 = 6
|
|||
|
2 : 5 = 1
|