116 lines
4.4 KiB
Java
116 lines
4.4 KiB
Java
|
/*This Java program is to check whether graph is bipartite using dfs. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets and such that every edge connects a vertex in to one in that is, and are each independent sets. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.*/
|
||
|
|
||
|
import java.util.InputMismatchException;
|
||
|
import java.util.Scanner;
|
||
|
import java.util.Stack;
|
||
|
|
||
|
public class BipartiteDfs
|
||
|
{
|
||
|
private int numberOfVertices;
|
||
|
private Stack<Integer> stack;
|
||
|
|
||
|
public static final int NO_COLOR = 0;
|
||
|
public static final int RED = 1;
|
||
|
public static final int BLUE = 2;
|
||
|
|
||
|
public BipartiteDfs(int numberOfVertices)
|
||
|
{
|
||
|
this.numberOfVertices = numberOfVertices;
|
||
|
stack = new Stack<Integer>();
|
||
|
}
|
||
|
|
||
|
public boolean isBipartite(int adjacencyMartix[][], int source)
|
||
|
{
|
||
|
int[] colored = new int[numberOfVertices + 1];
|
||
|
for (int vertex = 1; vertex <= numberOfVertices; vertex++)
|
||
|
{
|
||
|
colored[vertex] = NO_COLOR;
|
||
|
}
|
||
|
stack.push(source);
|
||
|
colored[source] = RED;
|
||
|
int element = source;
|
||
|
int neighbours = source;
|
||
|
while (!stack.empty())
|
||
|
{
|
||
|
element = stack.peek();
|
||
|
neighbours = element;
|
||
|
while (neighbours <= numberOfVertices)
|
||
|
{
|
||
|
if (adjacencyMartix[element][neighbours] == 1&& colored[neighbours] == colored[element])
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
if (adjacencyMartix[element][neighbours] == 1 && colored[neighbours] == NO_COLOR)
|
||
|
{
|
||
|
colored[neighbours] = (colored[element] == RED) ? BLUE : RED;
|
||
|
stack.push(neighbours);
|
||
|
element = neighbours;
|
||
|
neighbours = 1;
|
||
|
continue;
|
||
|
}
|
||
|
neighbours++;
|
||
|
}
|
||
|
stack.pop();
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public static void main(String... arg)
|
||
|
{
|
||
|
int number_of_nodes, source;
|
||
|
Scanner scanner = null;
|
||
|
try
|
||
|
{
|
||
|
System.out.println("Enter the number of nodes in the graph");
|
||
|
scanner = new Scanner(System.in);
|
||
|
number_of_nodes = scanner.nextInt();
|
||
|
int adjacency_matrix[][] = new int[number_of_nodes + 1][number_of_nodes + 1];
|
||
|
System.out.println("Enter the adjacency matrix");
|
||
|
for (int i = 1; i <= number_of_nodes; i++)
|
||
|
{
|
||
|
for (int j = 1; j <= number_of_nodes; j++)
|
||
|
{
|
||
|
adjacency_matrix[i][j] = scanner.nextInt();
|
||
|
}
|
||
|
}
|
||
|
for (int i = 1; i <= number_of_nodes; i++)
|
||
|
{
|
||
|
for (int j = 1; j <= number_of_nodes; j++)
|
||
|
{
|
||
|
if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0)
|
||
|
{
|
||
|
adjacency_matrix[j][i] = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
System.out.println("Enter the source for the graph");
|
||
|
source = scanner.nextInt();
|
||
|
BipartiteDfs bipartiteDfs = new BipartiteDfs(number_of_nodes);
|
||
|
if (bipartiteDfs.isBipartite(adjacency_matrix, source))
|
||
|
{
|
||
|
System.out.println("The given graph is bipartite");
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
System.out.println("The given graph is not bipartite");
|
||
|
}
|
||
|
}
|
||
|
catch (InputMismatchException inputMismatch)
|
||
|
{
|
||
|
System.out.println("Wrong Input format");
|
||
|
}
|
||
|
scanner.close();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Enter the number of nodes in the graph
|
||
|
4
|
||
|
Enter the adjacency matrix
|
||
|
0 1 0 1
|
||
|
1 0 1 0
|
||
|
0 1 0 1
|
||
|
1 0 1 0
|
||
|
Enter the source for the graph
|
||
|
1
|
||
|
The given graph is bipartite
|