programming-examples/java/Graph_Problems_Algorithms/Java Program to Check whether Graph is a Bipartite using BFS.java

112 lines
4.2 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program is to check whether graph is bipartite using bfs. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets and such that every edge connects a vertex in to one in that is, and are each independent sets. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.*/
import java.util.InputMismatchException;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class BipartiteBfs
{
private int numberOfVertices;
private Queue<Integer> queue;
public static final int NO_COLOR = 0;
public static final int RED = 1;
public static final int BLUE = 2;
public BipartiteBfs(int numberOfVertices)
{
this.numberOfVertices = numberOfVertices;
queue = new LinkedList<Integer>();
}
public boolean isBipartite(int adjacencyMatrix[][], int source)
{
int[] colored = new int[numberOfVertices + 1];
for (int vertex = 1; vertex <= numberOfVertices; vertex++)
{
colored[vertex] = NO_COLOR;
}
colored[source] = RED;
queue.add(source);
int element, neighbour;
while (!queue.isEmpty())
{
element = queue.remove();
neighbour = 1;
while (neighbour <= numberOfVertices)
{
if (adjacencyMatrix[element][neighbour] == 1 && colored[element]== colored[neighbour])
{
return false;
}
if (adjacencyMatrix[element][neighbour] == 1 && colored[neighbour]== NO_COLOR)
{
colored[neighbour] = (colored[element] == RED ) ? BLUE :RED;
queue.add(neighbour);
}
neighbour++;
}
}
return true;
}
public static void main(String... arg)
{
int number_of_nodes, source;
Scanner scanner = null;
try
{
System.out.println("Enter the number of nodes in the graph");
scanner = new Scanner(System.in);
number_of_nodes = scanner.nextInt();
int adjacency_matrix[][] = new int[number_of_nodes + 1][number_of_nodes + 1];
System.out.println("Enter the adjacency matrix");
for (int i = 1; i <= number_of_nodes; i++)
{
for (int j = 1; j <= number_of_nodes; j++)
{
adjacency_matrix[i][j] = scanner.nextInt();
}
}
for (int i = 1; i <= number_of_nodes; i++)
{
for (int j = 1; j <= number_of_nodes; j++)
{
if(adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0)
{
adjacency_matrix[j][i] = 1;
}
}
}
System.out.println("Enter the source for the graph");
source = scanner.nextInt();
BipartiteBfs bipartiteBfs = new BipartiteBfs(number_of_nodes);
if (bipartiteBfs.isBipartite(adjacency_matrix, source))
{
System.out.println("The given graph is bipartite");
}
else
{
System.out.println("The given graph is not bipartite");
}
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input format");
}
scanner.close();
}
}
/*
Enter the number of nodes in the graph
4
Enter the adjacency matrix
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
Enter the source for the graph
1
The given graph is bipartite