124 lines
5.6 KiB
Java
124 lines
5.6 KiB
Java
|
package com.jwetherell.algorithms.graph;
|
||
|
|
||
|
import java.util.ArrayList;
|
||
|
import java.util.HashMap;
|
||
|
import java.util.List;
|
||
|
import java.util.Map;
|
||
|
|
||
|
import com.jwetherell.algorithms.data_structures.Graph;
|
||
|
|
||
|
/**
|
||
|
* Bellman-Ford's shortest path. Works on both negative and positive weighted
|
||
|
* edges. Also detects negative weight cycles. Returns a tuple of total cost of
|
||
|
* shortest path and the path.
|
||
|
*
|
||
|
* Worst case: O(|V| |E|)
|
||
|
*
|
||
|
* https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
|
||
|
*
|
||
|
* @author Justin Wetherell <phishman3579@gmail.com>
|
||
|
*/
|
||
|
public class BellmanFord {
|
||
|
|
||
|
private BellmanFord() { }
|
||
|
|
||
|
/**
|
||
|
* Get shortest path for all vertices
|
||
|
*/
|
||
|
public static Map<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>> getShortestPaths(Graph<Integer> graph, Graph.Vertex<Integer> start) {
|
||
|
final Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths = new HashMap<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>();
|
||
|
final Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs = new HashMap<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>>();
|
||
|
|
||
|
getShortestPath(graph, start, paths, costs);
|
||
|
|
||
|
final Map<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>> map = new HashMap<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>>();
|
||
|
for (Graph.CostVertexPair<Integer> pair : costs.values()) {
|
||
|
final int cost = pair.getCost();
|
||
|
final Graph.Vertex<Integer> vertex = pair.getVertex();
|
||
|
final List<Graph.Edge<Integer>> path = paths.get(vertex);
|
||
|
map.put(vertex, new Graph.CostPathPair<Integer>(cost, path));
|
||
|
}
|
||
|
return map;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get shortest path to from 'start' to 'end' vertices
|
||
|
*/
|
||
|
public static Graph.CostPathPair<Integer> getShortestPath(Graph<Integer> graph, Graph.Vertex<Integer> start, Graph.Vertex<Integer> end) {
|
||
|
if (graph == null)
|
||
|
throw (new NullPointerException("Graph must be non-NULL."));
|
||
|
|
||
|
final Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths = new HashMap<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>();
|
||
|
final Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs = new HashMap<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>>();
|
||
|
return getShortestPath(graph, start, end, paths, costs);
|
||
|
}
|
||
|
|
||
|
private static Graph.CostPathPair<Integer> getShortestPath(Graph<Integer> graph,
|
||
|
Graph.Vertex<Integer> start, Graph.Vertex<Integer> end,
|
||
|
Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths,
|
||
|
Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs) {
|
||
|
if (end == null)
|
||
|
throw (new NullPointerException("end must be non-NULL."));
|
||
|
|
||
|
getShortestPath(graph, start, paths, costs);
|
||
|
|
||
|
final Graph.CostVertexPair<Integer> pair = costs.get(end);
|
||
|
final List<Graph.Edge<Integer>> list = paths.get(end);
|
||
|
return (new Graph.CostPathPair<Integer>(pair.getCost(), list));
|
||
|
}
|
||
|
|
||
|
private static void getShortestPath(Graph<Integer> graph,
|
||
|
Graph.Vertex<Integer> start,
|
||
|
Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths,
|
||
|
Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs) {
|
||
|
if (graph == null)
|
||
|
throw (new NullPointerException("Graph must be non-NULL."));
|
||
|
if (start == null)
|
||
|
throw (new NullPointerException("start must be non-NULL."));
|
||
|
|
||
|
for (Graph.Vertex<Integer> v : graph.getVertices())
|
||
|
paths.put(v, new ArrayList<Graph.Edge<Integer>>());
|
||
|
|
||
|
// All vertices are INFINITY unless it's the start vertices
|
||
|
for (Graph.Vertex<Integer> v : graph.getVertices())
|
||
|
if (v.equals(start))
|
||
|
costs.put(v, new Graph.CostVertexPair<Integer>(0, v));
|
||
|
else
|
||
|
costs.put(v, new Graph.CostVertexPair<Integer>(Integer.MAX_VALUE, v));
|
||
|
|
||
|
boolean negativeCycleCheck = false;
|
||
|
for (int i = 0; i < graph.getVertices().size(); i++) {
|
||
|
// If it's the last vertices, perform a negative weight cycle check.
|
||
|
// The graph should be finished by the size()-1 time through this loop.
|
||
|
if (i == (graph.getVertices().size() - 1))
|
||
|
negativeCycleCheck = true;
|
||
|
|
||
|
// Compute costs to all vertices
|
||
|
for (Graph.Edge<Integer> e : graph.getEdges()) {
|
||
|
final Graph.CostVertexPair<Integer> pair = costs.get(e.getToVertex());
|
||
|
final Graph.CostVertexPair<Integer> lowestCostToThisVertex = costs.get(e.getFromVertex());
|
||
|
|
||
|
// If the cost of the from vertex is MAX_VALUE then treat as INIFINITY.
|
||
|
if (lowestCostToThisVertex.getCost() == Integer.MAX_VALUE)
|
||
|
continue;
|
||
|
|
||
|
final int cost = lowestCostToThisVertex.getCost() + e.getCost();
|
||
|
if (cost < pair.getCost()) {
|
||
|
// Found a shorter path to a reachable vertex
|
||
|
pair.setCost(cost);
|
||
|
|
||
|
if (negativeCycleCheck) {
|
||
|
// Uhh ohh... negative weight cycle
|
||
|
throw new IllegalArgumentException("Graph contains a negative weight cycle.");
|
||
|
}
|
||
|
|
||
|
final List<Graph.Edge<Integer>> list = paths.get(e.getToVertex());
|
||
|
list.clear();
|
||
|
list.addAll(paths.get(e.getFromVertex()));
|
||
|
list.add(e);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|