94 lines
3.2 KiB
Java
94 lines
3.2 KiB
Java
|
package com.jwetherell.algorithms.strings;
|
||
|
|
||
|
/**
|
||
|
* Rotation of the string is some cyclic transformation of that string.
|
||
|
* More formally a string s = uv is said to be a rotation of t if t = vu.
|
||
|
* <p>
|
||
|
* http://en.wikipedia.org/wiki/String_(computer_science)#Rotations
|
||
|
* <br>
|
||
|
* @Author Szymon Stankiewicz <mail@stankiewicz.me>
|
||
|
* @author Justin Wetherell <phishman3579@gmail.com>
|
||
|
*/
|
||
|
public class Rotation {
|
||
|
|
||
|
private static char charAt(String text, int pos) {
|
||
|
pos = pos % text.length();
|
||
|
return text.charAt(pos);
|
||
|
}
|
||
|
|
||
|
private static int compare(char a, char b, boolean greater) {
|
||
|
if (a == b)
|
||
|
return 0;
|
||
|
return (a < b) ^ greater ? -1 : 1;
|
||
|
}
|
||
|
|
||
|
private static String bestRotation(String text, boolean greatest) {
|
||
|
if (text.length() < 2)
|
||
|
return text;
|
||
|
|
||
|
final int n = text.length() * 2;
|
||
|
int k = 0;
|
||
|
int i = 0, j = 1;
|
||
|
while (i + k < n && j + k < n) {
|
||
|
final char a = charAt(text, i+k);
|
||
|
final char b = charAt(text, j+k);
|
||
|
final int comp = compare(a, b, greatest);
|
||
|
if (comp == 0) {
|
||
|
k++;
|
||
|
} else if (comp > 0) {
|
||
|
i += k+1;
|
||
|
if (i <= j )
|
||
|
i = j + 1;
|
||
|
k = 0;
|
||
|
} else {
|
||
|
j += k+1;
|
||
|
if (j <= i)
|
||
|
j = i + 1;
|
||
|
k = 0;
|
||
|
}
|
||
|
}
|
||
|
final int pos = i < j ? i : j;
|
||
|
return text.substring(pos) + text.substring(0, pos);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Finds lexicographically minimal string rotation.
|
||
|
* Lexicographically minimal string rotation is a rotation of a string possessing the
|
||
|
* lowest lexicographical order of all such rotations.
|
||
|
* Finding the lexicographically minimal rotation is useful as a way of normalizing strings.
|
||
|
* <p>
|
||
|
* http://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation
|
||
|
* <br>
|
||
|
* This function implements Duval's algorithm.
|
||
|
* <br>
|
||
|
* http://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation#Duval.27s_Lyndon_Factorization_Algorithm
|
||
|
* Complexity: O(n)
|
||
|
* <br>
|
||
|
* @param text
|
||
|
* @return lexicographicall minimal rotation of text
|
||
|
*/
|
||
|
public static String getLexicographicallyMinimalRotation(String text) {
|
||
|
return bestRotation(text, false);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Finds lexicographically maximal string rotation.
|
||
|
* Lexicographically maximal string rotation is a rotation of a string possessing the
|
||
|
* highest lexicographical order of all such rotations.
|
||
|
* Finding the lexicographically maximal rotation is useful as a way of normalizing strings.
|
||
|
* <p>
|
||
|
* http://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation
|
||
|
* <br>
|
||
|
* This function implements Duval's algorithm.
|
||
|
* http://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation#Duval.27s_Lyndon_Factorization_Algorithm
|
||
|
* <br>
|
||
|
* Complexity: O(n)
|
||
|
* <br>
|
||
|
* @param text
|
||
|
* @return lexicographicall minimal rotation of text
|
||
|
*/
|
||
|
public static String getLexicographicallyMaximalRotation(String text) {
|
||
|
return bestRotation(text, true);
|
||
|
}
|
||
|
}
|