127 lines
3.9 KiB
C++
127 lines
3.9 KiB
C++
|
/*This is a C++ Program to find minimum number of edges to cut to make the graph disconnected. An edge in an undirected connected graph is a bridge if removing it disconnects the graph. For a disconnected undirected graph, definition is similar, a bridge is an edge removing which increases number of connected components.*/
|
||
|
|
||
|
// A C++ program to find bridges in a given undirected graph
|
||
|
#include<iostream>
|
||
|
#include <list>
|
||
|
#define NIL -1
|
||
|
using namespace std;
|
||
|
|
||
|
// A class that represents an undirected graph
|
||
|
class Graph
|
||
|
{
|
||
|
int V; // No. of vertices
|
||
|
list<int> *adj; // A dynamic array of adjacency lists
|
||
|
void bridgeUtil(int v, bool visited[], int disc[], int low[],
|
||
|
int parent[]);
|
||
|
public:
|
||
|
Graph(int V); // Constructor
|
||
|
void addEdge(int v, int w); // function to add an edge to graph
|
||
|
void bridge(); // prints all bridges
|
||
|
};
|
||
|
|
||
|
Graph::Graph(int V)
|
||
|
{
|
||
|
this->V = V;
|
||
|
adj = new list<int> [V];
|
||
|
}
|
||
|
|
||
|
void Graph::addEdge(int v, int w)
|
||
|
{
|
||
|
adj[v].push_back(w);
|
||
|
adj[w].push_back(v); // Note: the graph is undirected
|
||
|
}
|
||
|
|
||
|
void Graph::bridgeUtil(int u, bool visited[], int disc[], int low[],
|
||
|
int parent[])
|
||
|
{
|
||
|
// A static variable is used for simplicity, we can avoid use of static
|
||
|
// variable by passing a pointer.
|
||
|
static int time = 0;
|
||
|
// Mark the current node as visited
|
||
|
visited[u] = true;
|
||
|
// Initialize discovery time and low value
|
||
|
disc[u] = low[u] = ++time;
|
||
|
// Go through all vertices aadjacent to this
|
||
|
list<int>::iterator i;
|
||
|
for (i = adj[u].begin(); i != adj[u].end(); ++i)
|
||
|
{
|
||
|
int v = *i; // v is current adjacent of u
|
||
|
// If v is not visited yet, then recur for it
|
||
|
if (!visited[v])
|
||
|
{
|
||
|
parent[v] = u;
|
||
|
bridgeUtil(v, visited, disc, low, parent);
|
||
|
// Check if the subtree rooted with v has a connection to
|
||
|
// one of the ancestors of u
|
||
|
low[u] = min(low[u], low[v]);
|
||
|
// If the lowest vertex reachable from subtree under v is
|
||
|
// below u in DFS tree, then u-v is a bridge
|
||
|
if (low[v] > disc[u])
|
||
|
cout << u << " " << v << endl;
|
||
|
}
|
||
|
// Update low value of u for parent function calls.
|
||
|
else if (v != parent[u])
|
||
|
low[u] = min(low[u], disc[v]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// DFS based function to find all bridges. It uses recursive function bridgeUtil()
|
||
|
void Graph::bridge()
|
||
|
{
|
||
|
// Mark all the vertices as not visited
|
||
|
bool *visited = new bool[V];
|
||
|
int *disc = new int[V];
|
||
|
int *low = new int[V];
|
||
|
int *parent = new int[V];
|
||
|
// Initialize parent and visited arrays
|
||
|
for (int i = 0; i < V; i++)
|
||
|
{
|
||
|
parent[i] = NIL;
|
||
|
visited[i] = false;
|
||
|
}
|
||
|
// Call the recursive helper function to find Bridges
|
||
|
// in DFS tree rooted with vertex 'i'
|
||
|
for (int i = 0; i < V; i++)
|
||
|
if (visited[i] == false)
|
||
|
bridgeUtil(i, visited, disc, low, parent);
|
||
|
}
|
||
|
|
||
|
// Driver program to test above function
|
||
|
int main()
|
||
|
{
|
||
|
// Create graphs given in above diagrams
|
||
|
cout << "\nBridges in first graph \n";
|
||
|
Graph g1(5);
|
||
|
g1.addEdge(1, 0);
|
||
|
g1.addEdge(0, 2);
|
||
|
g1.addEdge(2, 1);
|
||
|
g1.addEdge(0, 3);
|
||
|
g1.addEdge(3, 4);
|
||
|
g1.bridge();
|
||
|
cout << "\nBridges in second graph \n";
|
||
|
Graph g2(4);
|
||
|
g2.addEdge(0, 1);
|
||
|
g2.addEdge(1, 2);
|
||
|
g2.addEdge(2, 3);
|
||
|
g2.bridge();
|
||
|
cout << "\nBridges in third graph \n";
|
||
|
Graph g3(7);
|
||
|
g3.addEdge(0, 1);
|
||
|
g3.addEdge(1, 2);
|
||
|
g3.addEdge(2, 0);
|
||
|
g3.addEdge(1, 3);
|
||
|
g3.addEdge(1, 4);
|
||
|
g3.addEdge(1, 6);
|
||
|
g3.addEdge(3, 5);
|
||
|
g3.addEdge(4, 5);
|
||
|
g3.bridge();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Bridges in first graph
|
||
|
|
||
|
3 4
|
||
|
|
||
|
|