programming-examples/java/Searching_Sorting_Algorithms/Java Program to Implement the Binary Counting Method to Generate Subsets of a Set.java

94 lines
2.7 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a java program to generate and print all possible subsets using the method of Binary Counting method. The generations of subsets are done using binary numbers. Let there be 3 elements in the set, we generate binary equivalent of 2^3 = 8 numbers(0-7), where each bit in a number represents the presence/absence of element in the subset. The element is present if bit is 1, absent otherwise. 010 only second element is present in the subset.*/
//This is a java program to generate all subsets of given set of numbers using binary counting method
import java.util.Random;
import java.util.Scanner;
public class Binary_Counting_Subsets
{
public static int[] binary(int N)
{
int[] binary = new int[(int) Math.pow(2, N)];
for (int i = 0; i < Math.pow(2, N); i++)
{
int b = 1;
binary[i] = 0;
int num = i;
while (num > 0)
{
binary[i] += (num % 2) * b;
num /= 2;
b = b * 10;
}
}
return binary;
}
public static void main(String args[])
{
Random random = new Random();
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of elements in the set: ");
int N = sc.nextInt();
int[] sequence = new int[N];
for (int i = 0; i < N; i++)
sequence[i] = Math.abs(random.nextInt(100));
System.out.println("The elements in the set : ");
for (int i = 0; i < N; i++)
System.out.print(sequence[i] + " ");
int[] mask = new int[(int) Math.pow(2, N)];
mask = binary(N);
System.out.println("\nThe permutations are: ");
for (int i = 0; i < Math.pow(2, N); i++)
{
System.out.print("{");
for (int j = 0; j < N; j++)
{
if (mask[i] % 10 == 1)
System.out.print(sequence[j] + " ");
mask[i] /= 10;
}
System.out.println("}");
}
sc.close();
}
}
/*
Enter the number of elements in the set:
5
The elements in the set :
78 35 5 10 15
The permutations are:
{ }
{ 78 }
{ 35 }
{ 78 35 }
{ 5 }
{ 78 5 }
{ 35 5 }
{ 78 35 5 }
{ 10 }
{ 78 10 }
{ 35 10 }
{ 78 35 10 }
{ 5 10 }
{ 78 5 10 }
{ 35 5 10 }
{ 78 35 5 10 }
{ 15 }
{ 78 15 }
{ 35 15 }
{ 78 35 15 }
{ 5 15 }
{ 78 5 15 }
{ 35 5 15 }
{ 78 35 5 15 }
{ 10 15 }
{ 78 10 15 }
{ 35 10 15 }
{ 78 35 10 15 }
{ 5 10 15 }
{ 78 5 10 15 }
{ 35 5 10 15 }
{ 78 35 5 10 15 }