programming-examples/java/Numerical_Problems/Java Program to Compute Discrete Fourier Transform Using the Fast Fourier Transform Approach.java

273 lines
8.4 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*
This is the java implementation of performing Discrete Fourier Transform using Fast Fourier Transform algorithm. This class finds the DFT of N (power of 2) complex elements, generated randomly, using FFT. Further verification is done by taking the Inverse Discrete Fourier Transform, again using FFT.
*/
// This is a sample program to perform DFT using FFT, FFT is performed on random input sequence
public class FFT
{
public static class Complex
{
private final double re; // the real part
private final double im; // the imaginary part
// create a new object with the given real and imaginary parts
public Complex(double real, double imag)
{
re = real;
im = imag;
}
// return a string representation of the invoking Complex object
public String toString()
{
if (im == 0)
return re + "";
if (re == 0)
return im + "i";
if (im < 0)
return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}
// return abs/modulus/magnitude and angle/phase/argument
public double abs()
{
return Math.hypot(re, im);
} // Math.sqrt(re*re + im*im)
public double phase()
{
return Math.atan2(im, re);
} // between -pi and pi
// return a new Complex object whose value is (this + b)
public Complex plus(Complex b)
{
Complex a = this; // invoking object
double real = a.re + b.re;
double imag = a.im + b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this - b)
public Complex minus(Complex b)
{
Complex a = this;
double real = a.re - b.re;
double imag = a.im - b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this * b)
public Complex times(Complex b)
{
Complex a = this;
double real = a.re * b.re - a.im * b.im;
double imag = a.re * b.im + a.im * b.re;
return new Complex(real, imag);
}
// scalar multiplication
// return a new object whose value is (this * alpha)
public Complex times(double alpha)
{
return new Complex(alpha * re, alpha * im);
}
// return a new Complex object whose value is the conjugate of this
public Complex conjugate()
{
return new Complex(re, -im);
}
// return a new Complex object whose value is the reciprocal of this
public Complex reciprocal()
{
double scale = re * re + im * im;
return new Complex(re / scale, -im / scale);
}
// return the real or imaginary part
public double re()
{
return re;
}
public double im()
{
return im;
}
// return a / b
public Complex divides(Complex b)
{
Complex a = this;
return a.times(b.reciprocal());
}
// return a new Complex object whose value is the complex exponential of
// this
public Complex exp()
{
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re)
* Math.sin(im));
}
// return a new Complex object whose value is the complex sine of this
public Complex sin()
{
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re)
* Math.sinh(im));
}
// return a new Complex object whose value is the complex cosine of this
public Complex cos()
{
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re)
* Math.sinh(im));
}
// return a new Complex object whose value is the complex tangent of
// this
public Complex tan()
{
return sin().divides(cos());
}
// a static version of plus
public static Complex plus(Complex a, Complex b)
{
double real = a.re + b.re;
double imag = a.im + b.im;
Complex sum = new Complex(real, imag);
return sum;
}
// compute the FFT of x[], assuming its length is a power of 2
public static Complex[] fft(Complex[] x)
{
int N = x.length;
// base case
if (N == 1)
return new Complex[] { x[0] };
// radix 2 Cooley-Tukey FFT
if (N % 2 != 0)
{
throw new RuntimeException("N is not a power of 2");
}
// fft of even terms
Complex[] even = new Complex[N / 2];
for (int k = 0; k < N / 2; k++)
{
even[k] = x[2 * k];
}
Complex[] q = fft(even);
// fft of odd terms
Complex[] odd = even; // reuse the array
for (int k = 0; k < N / 2; k++)
{
odd[k] = x[2 * k + 1];
}
Complex[] r = fft(odd);
// combine
Complex[] y = new Complex[N];
for (int k = 0; k < N / 2; k++)
{
double kth = -2 * k * Math.PI / N;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = q[k].plus(wk.times(r[k]));
y[k + N / 2] = q[k].minus(wk.times(r[k]));
}
return y;
}
// compute the inverse FFT of x[], assuming its length is a power of 2
public static Complex[] ifft(Complex[] x)
{
int N = x.length;
Complex[] y = new Complex[N];
// take conjugate
for (int i = 0; i < N; i++)
{
y[i] = x[i].conjugate();
}
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < N; i++)
{
y[i] = y[i].conjugate();
}
// divide by N
for (int i = 0; i < N; i++)
{
y[i] = y[i].times(1.0 / N);
}
return y;
}
// display an array of Complex numbers to standard output
public static void show(Complex[] x, String title)
{
System.out.println(title);
for (int i = 0; i < x.length; i++)
{
System.out.println(x[i]);
}
System.out.println();
}
public static void main(String[] args)
{
int N = 8;//Integer.parseInt(args[0]);
Complex[] x = new Complex[N];
// original data
for (int i = 0; i < N; i++)
{
x[i] = new Complex(i, 0);
x[i] = new Complex(-2 * Math.random() + 1, 0);
}
show(x, "x");
// FFT of original data
Complex[] y = fft(x);
show(y, "y = fft(x)");
// take inverse FFT
Complex[] z = ifft(y);
show(z, "z = ifft(y)");
}
}
}
/*
x
0.5568836254037923
0.8735842104393365
0.6099699812709252
0.5631502515566189
-0.518857260970139
-0.5946393148293805
0.47144753318047794
-0.3501597962417593
y = fft(x)
1.6113792298098721
1.4681239692650163 - 1.8225209872296184i
-1.0433911500177497 - 0.06595444029509645i
0.6833578034828462 - 1.545476091048724i
0.6275085279602408
0.6833578034828462 + 1.545476091048724i
-1.0433911500177497 + 0.06595444029509645i
1.4681239692650163 + 1.8225209872296184i
z = ifft(y)
0.5568836254037923
0.8735842104393365 - 5.652078740871965E-17i
0.6099699812709252 - 4.24102681660054E-18i
0.5631502515566189 - 5.4501515053796015E-17i
-0.518857260970139
-0.5946393148293805 + 5.4501515053796015E-17i
0.47144753318047794 + 4.24102681660054E-18i
-0.3501597962417593 + 5.652078740871965E-17i