programming-examples/java/Graph_Problems_Algorithms/Java Program to Perform Inorder Non-Recursive Traversal of a Given Binary Tree.java

142 lines
3.1 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a java program to construct a binary tree and perform in-order traversal of the constructed binary tree.
Nodes visited are in the order:
visit Left node
visit Root node
visit Right node*/
//This is a java program to implement non recursive in order traversal of Binary Search Tree
import java.util.Scanner;
import java.util.Stack;
class BinarySearchTreeNode
{
BinarySearchTreeNode left, right;
int data;
public BinarySearchTreeNode()
{
left = null;
right = null;
data = 0;
}
public BinarySearchTreeNode(int n)
{
left = null;
right = null;
data = n;
}
public void setLeft(BinarySearchTreeNode n)
{
left = n;
}
public void setRight(BinarySearchTreeNode n)
{
right = n;
}
public BinarySearchTreeNode getLeft()
{
return left;
}
public BinarySearchTreeNode getRight()
{
return right;
}
public void setData(int d)
{
data = d;
}
public int getData()
{
return data;
}
}
class BinarySearchTreeOperations
{
private BinarySearchTreeNodes root;
public BinarySearchTreeOperations()
{
root = null;
}
public boolean isEmpty()
{
return root == null;
}
public void insert(int data)
{
root = insert(root, data);
}
private BinarySearchTreeNodes insert(BinarySearchTreeNodes node, int data)
{
if (node == null)
node = new BinarySearchTreeNodes(data);
else
{
if (data <= node.getData())
node.left = insert(node.left, data);
else
node.right = insert(node.right, data);
}
return node;
}
public void inorder()
{
inorder(root);
}
private void inorder(BinarySearchTreeNodes r)
{
if (r == null)
return;
Stack<BinarySearchTreeNodes> stack = new Stack<BinarySearchTreeNodes>();
while (!stack.isEmpty() || r != null)
{
if (r != null)
{
stack.push(r);
r = r.left;
}
else
{
r = stack.pop();
System.out.print(r.data + " ");
r = r.right;
}
}
}
}
public class Inorder_NonRecursive_BST
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
BinarySearchTreeOperations bst = new BinarySearchTreeOperations();
System.out.println("Enter the first 10 elements of the tree\n");
int N = 10;
for (int i = 0; i < N; i++)
bst.insert(scan.nextInt());
System.out.print("\nIn order : ");
bst.inorder();
scan.close();
}
}
/*
Enter the first 10 elements of the tree
12 4 10 13 15 46 78 98 45 12
In order : 4 10 12 12 13 15 45 46 78 98