142 lines
3.1 KiB
Java
142 lines
3.1 KiB
Java
|
/*This is a java program to construct a binary tree and perform in-order traversal of the constructed binary tree.
|
||
|
Nodes visited are in the order:
|
||
|
visit Left node
|
||
|
visit Root node
|
||
|
visit Right node*/
|
||
|
|
||
|
//This is a java program to implement non recursive in order traversal of Binary Search Tree
|
||
|
import java.util.Scanner;
|
||
|
import java.util.Stack;
|
||
|
|
||
|
class BinarySearchTreeNode
|
||
|
{
|
||
|
BinarySearchTreeNode left, right;
|
||
|
int data;
|
||
|
|
||
|
public BinarySearchTreeNode()
|
||
|
{
|
||
|
left = null;
|
||
|
right = null;
|
||
|
data = 0;
|
||
|
}
|
||
|
|
||
|
public BinarySearchTreeNode(int n)
|
||
|
{
|
||
|
left = null;
|
||
|
right = null;
|
||
|
data = n;
|
||
|
}
|
||
|
|
||
|
public void setLeft(BinarySearchTreeNode n)
|
||
|
{
|
||
|
left = n;
|
||
|
}
|
||
|
|
||
|
public void setRight(BinarySearchTreeNode n)
|
||
|
{
|
||
|
right = n;
|
||
|
}
|
||
|
|
||
|
public BinarySearchTreeNode getLeft()
|
||
|
{
|
||
|
return left;
|
||
|
}
|
||
|
|
||
|
public BinarySearchTreeNode getRight()
|
||
|
{
|
||
|
return right;
|
||
|
}
|
||
|
|
||
|
public void setData(int d)
|
||
|
{
|
||
|
data = d;
|
||
|
}
|
||
|
|
||
|
public int getData()
|
||
|
{
|
||
|
return data;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
class BinarySearchTreeOperations
|
||
|
{
|
||
|
private BinarySearchTreeNodes root;
|
||
|
|
||
|
public BinarySearchTreeOperations()
|
||
|
{
|
||
|
root = null;
|
||
|
}
|
||
|
|
||
|
public boolean isEmpty()
|
||
|
{
|
||
|
return root == null;
|
||
|
}
|
||
|
|
||
|
public void insert(int data)
|
||
|
{
|
||
|
root = insert(root, data);
|
||
|
}
|
||
|
|
||
|
private BinarySearchTreeNodes insert(BinarySearchTreeNodes node, int data)
|
||
|
{
|
||
|
if (node == null)
|
||
|
node = new BinarySearchTreeNodes(data);
|
||
|
else
|
||
|
{
|
||
|
if (data <= node.getData())
|
||
|
node.left = insert(node.left, data);
|
||
|
else
|
||
|
node.right = insert(node.right, data);
|
||
|
}
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
public void inorder()
|
||
|
{
|
||
|
inorder(root);
|
||
|
}
|
||
|
|
||
|
private void inorder(BinarySearchTreeNodes r)
|
||
|
{
|
||
|
if (r == null)
|
||
|
return;
|
||
|
Stack<BinarySearchTreeNodes> stack = new Stack<BinarySearchTreeNodes>();
|
||
|
while (!stack.isEmpty() || r != null)
|
||
|
{
|
||
|
if (r != null)
|
||
|
{
|
||
|
stack.push(r);
|
||
|
r = r.left;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
r = stack.pop();
|
||
|
System.out.print(r.data + " ");
|
||
|
r = r.right;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public class Inorder_NonRecursive_BST
|
||
|
{
|
||
|
public static void main(String[] args)
|
||
|
{
|
||
|
Scanner scan = new Scanner(System.in);
|
||
|
BinarySearchTreeOperations bst = new BinarySearchTreeOperations();
|
||
|
System.out.println("Enter the first 10 elements of the tree\n");
|
||
|
int N = 10;
|
||
|
for (int i = 0; i < N; i++)
|
||
|
bst.insert(scan.nextInt());
|
||
|
System.out.print("\nIn order : ");
|
||
|
bst.inorder();
|
||
|
scan.close();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Enter the first 10 elements of the tree
|
||
|
|
||
|
12 4 10 13 15 46 78 98 45 12
|
||
|
|
||
|
In order : 4 10 12 12 13 15 45 46 78 98
|