programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Warshall Algorithm.java

102 lines
2.9 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a Java Program to Implement Warshall Transitive closure Algorithm. Warshalls Transitive closure algorithm is used to determine if a path exists from vertex a to vertex b for all vertex pairs (a, b) in a graph.*/
/**
** Java Program to Implement Warshall Algorithm
**/
import java.util.Scanner;
/** Class Warshall **/
public class Warshall
{
private int V;
private boolean[][] tc;
/** Function to make the transitive closure **/
public void getTC(int[][] graph)
{
this.V = graph.length;
tc = new boolean[V][V];
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
if (graph[i][j] != 0)
tc[i][j] = true;
tc[i][i] = true;
}
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (tc[j][i])
for (int k = 0; k < V; k++)
if (tc[j][i] && tc[i][k])
tc[j][k] = true;
}
}
}
/** Funtion to display the trasitive closure **/
public void displayTC()
{
System.out.println("\nTransitive closure :\n");
System.out.print(" ");
for (int v = 0; v < V; v++)
System.out.print(" " + v );
System.out.println();
for (int v = 0; v < V; v++)
{
System.out.print(v +" ");
for (int w = 0; w < V; w++)
{
if (tc[v][w])
System.out.print(" * ");
else
System.out.print(" ");
}
System.out.println();
}
}
/** Main function **/
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Warshall Algorithm Test\n");
/** Make an object of Warshall class **/
Warshall w = new Warshall();
/** Accept number of vertices **/
System.out.println("Enter number of vertices\n");
int V = scan.nextInt();
/** get graph **/
System.out.println("\nEnter matrix\n");
int[][] graph = new int[V][V];
for (int i = 0; i < V; i++)
for (int j = 0; j < V; j++)
graph[i][j] = scan.nextInt();
w.getTC(graph);
w.displayTC();
}
}
/*
Enter number of vertices
6
Enter matrix
0 1 0 0 0 1
0 0 0 0 0 0
1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
Transitive closure :
0 1 2 3 4 5
0 * * * * *
1 *
2 * * * * * *
3 *
4 * *
5 * * *