programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Floyd-Warshall Algorithm.java

102 lines
4.0 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program is to implement the Floyd-Warshall algorithm.The algorithm is a graph analysis algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles) and also for finding transitive closure of a relation R.*/
import java.util.Scanner;
public class FloydWarshall
{
private int distancematrix[][];
private int numberofvertices;
public static final int INFINITY = 999;
public FloydWarshall(int numberofvertices)
{
distancematrix = new int[numberofvertices + 1][numberofvertices + 1];
this.numberofvertices = numberofvertices;
}
public void floydwarshall(int adjacencymatrix[][])
{
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
distancematrix[source][destination] = adjacencymatrix[source][destination];
}
}
for (int intermediate = 1; intermediate <= numberofvertices; intermediate++)
{
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
if (distancematrix[source][intermediate] + distancematrix[intermediate][destination]
< distancematrix[source][destination])
distancematrix[source][destination] = distancematrix[source][intermediate]
+ distancematrix[intermediate][destination];
}
}
}
for (int source = 1; source <= numberofvertices; source++)
System.out.print("\t" + source);
System.out.println();
for (int source = 1; source <= numberofvertices; source++)
{
System.out.print(source + "\t");
for (int destination = 1; destination <= numberofvertices; destination++)
{
System.out.print(distancematrix[source][destination] + "\t");
}
System.out.println();
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int numberofvertices;
Scanner scan = new Scanner(System.in);
System.out.println("Enter the number of vertices");
numberofvertices = scan.nextInt();
adjacency_matrix = new int[numberofvertices + 1][numberofvertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
adjacency_matrix[source][destination] = scan.nextInt();
if (source == destination)
{
adjacency_matrix[source][destination] = 0;
continue;
}
if (adjacency_matrix[source][destination] == 0)
{
adjacency_matrix[source][destination] = INFINITY;
}
}
}
System.out.println("The Transitive Closure of the Graph");
FloydWarshall floydwarshall = new FloydWarshall(numberofvertices);
floydwarshall.floydwarshall(adjacency_matrix);
scan.close();
}
}
/*
Enter the number of vertices
4
Enter the Weighted Matrix for the graph
0 0 3 0
2 0 0 0
0 7 0 1
6 0 0 0
The Transitive Closure of the Graph
1 2 3 4
1 0 10 3 4
2 2 0 5 6
3 7 7 0 1
4 6 16 9 0