programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Dijkstra’s Algorithm using Priority Queue.java

162 lines
5.7 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program,to Implement Dijkstras algorithm using Priority Queue.Dijkstras algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.*/
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.util.Set;
public class DijkstraPriorityQueue
{
private int distances[];
private Set<Integer> settled;
private PriorityQueue<Node> priorityQueue;
private int number_of_nodes;
private int adjacencyMatrix[][];
public DijkstraPriorityQueue(int number_of_nodes)
{
this.number_of_nodes = number_of_nodes;
distances = new int[number_of_nodes + 1];
settled = new HashSet<Integer>();
priorityQueue = new PriorityQueue<Node>(number_of_nodes,new Node());
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
}
public void dijkstra_algorithm(int adjacency_matrix[][], int source)
{
int evaluationNode;
for (int i = 1; i <= number_of_nodes; i++)
for (int j = 1; j <= number_of_nodes; j++)
adjacencyMatrix[i][j] = adjacency_matrix[i][j];
for (int i = 1; i <= number_of_nodes; i++)
{
distances[i] = Integer.MAX_VALUE;
}
priorityQueue.add(new Node(source, 0));
distances[source] = 0;
while (!priorityQueue.isEmpty())
{
evaluationNode = getNodeWithMinimumDistanceFromPriorityQueue();
settled.add(evaluationNode);
evaluateNeighbours(evaluationNode);
}
}
private int getNodeWithMinimumDistanceFromPriorityQueue()
{
int node = priorityQueue.remove();
return node;
}
private void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
{
if (!settled.contains(destinationNode))
{
if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
{
edgeDistance = adjacencyMatrix[evaluationNode][destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
}
priorityQueue.add(new Node(destinationNode,distances[destinationNode]));
}
}
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int source = 0;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = Integer.MAX_VALUE;
}
}
}
System.out.println("Enter the source ");
source = scan.nextInt();
DijkstraPriorityQueue dijkstrasPriorityQueue = new DijkstraPriorityQueue(number_of_vertices);
dijkstrasPriorityQueue.dijkstra_algorithm(adjacency_matrix, source);
System.out.println("The Shorted Path to all nodes are ");
for (int i = 1; i <= dijkstrasPriorityQueue.distances.length - 1; i++)
{
System.out.println(source + " to " + i + " is " + dijkstrasPriorityQueue.distances[i]);
}
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
class Node implements Comparator<Node>
{
public int node;
public int cost;
public Node()
{
}
public Node(int node, int cost)
{
this.node = node;
this.cost = cost;
}
@Override
public int compare(Node node1, Node node2)
{
if (node1.cost < node2.cost)
return -1;
if (node1.cost > node2.cost)
return 1;
return 0;
}
}
/*
Enter the number of vertices
5
Enter the Weighted Matrix for the graph
0 9 6 5 3
0 0 0 0 0
0 2 0 4 0
0 0 0 0 0
0 0 0 0 0
Enter the source
1
The Shorted Path to all nodes are
1 to 1 is 0
1 to 2 is 8
1 to 3 is 6
1 to 4 is 5
1 to 5 is 3