105 lines
4.6 KiB
Java
105 lines
4.6 KiB
Java
|
/*This is a java program to find shortest path between all vertices using FLoyd-Warshall’s algorithm. In computer science, the Floyd–Warshall algorithm (also known as Floyd’s algorithm, Roy–Warshall algorithm, Roy–Floyd algorithm, or the WFI algorithm) is a graph analysis algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles, see below) and also for finding transitive closure of a relation R. A single execution of the algorithm will find the lengths (summed weights) of the shortest paths between all pairs of vertices, though it does not return details of the paths themselves.*/
|
|||
|
|
|||
|
|
|||
|
import java.util.Scanner;
|
|||
|
|
|||
|
public class FloydWarshallShortestPath
|
|||
|
{
|
|||
|
private int distancematrix[][];
|
|||
|
private int numberofvertices;
|
|||
|
public static final int INFINITY = 999;
|
|||
|
|
|||
|
public FloydWarshallShortestPath(int numberofvertices)
|
|||
|
{
|
|||
|
distancematrix = new int[numberofvertices + 1][numberofvertices + 1];
|
|||
|
this.numberofvertices = numberofvertices;
|
|||
|
}
|
|||
|
|
|||
|
public void floydwarshall(int adjacencymatrix[][])
|
|||
|
{
|
|||
|
for (int source = 1; source <= numberofvertices; source++)
|
|||
|
{
|
|||
|
for (int destination = 1; destination <= numberofvertices; destination++)
|
|||
|
{
|
|||
|
distancematrix[source][destination] = adjacencymatrix[source][destination];
|
|||
|
}
|
|||
|
}
|
|||
|
for (int intermediate = 1; intermediate <= numberofvertices; intermediate++)
|
|||
|
{
|
|||
|
for (int source = 1; source <= numberofvertices; source++)
|
|||
|
{
|
|||
|
for (int destination = 1; destination <= numberofvertices; destination++)
|
|||
|
{
|
|||
|
if (distancematrix[source][intermediate]
|
|||
|
+ distancematrix[intermediate][destination] < distancematrix[source][destination])
|
|||
|
distancematrix[source][destination] = distancematrix[source][intermediate]
|
|||
|
+ distancematrix[intermediate][destination];
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
for (int source = 1; source <= numberofvertices; source++)
|
|||
|
System.out.print("\t" + source);
|
|||
|
System.out.println();
|
|||
|
for (int source = 1; source <= numberofvertices; source++)
|
|||
|
{
|
|||
|
System.out.print(source + "\t");
|
|||
|
for (int destination = 1; destination <= numberofvertices; destination++)
|
|||
|
{
|
|||
|
System.out.print(distancematrix[source][destination] + "\t");
|
|||
|
}
|
|||
|
System.out.println();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static void main(String... arg)
|
|||
|
{
|
|||
|
int adjacency_matrix[][];
|
|||
|
int numberofvertices;
|
|||
|
Scanner scan = new Scanner(System.in);
|
|||
|
System.out.println("Enter the number of vertices");
|
|||
|
numberofvertices = scan.nextInt();
|
|||
|
adjacency_matrix = new int[numberofvertices + 1][numberofvertices + 1];
|
|||
|
System.out.println("Enter the Weighted Matrix for the graph");
|
|||
|
for (int source = 1; source <= numberofvertices; source++)
|
|||
|
{
|
|||
|
for (int destination = 1; destination <= numberofvertices; destination++)
|
|||
|
{
|
|||
|
adjacency_matrix[source][destination] = scan.nextInt();
|
|||
|
if (source == destination)
|
|||
|
{
|
|||
|
adjacency_matrix[source][destination] = 0;
|
|||
|
continue;
|
|||
|
}
|
|||
|
if (adjacency_matrix[source][destination] == 0)
|
|||
|
{
|
|||
|
adjacency_matrix[source][destination] = INFINITY;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
System.out.println("The Transitive Closure of the Graph");
|
|||
|
FloydWarshallShortestPath floydwarshall = new FloydWarshallShortestPath(
|
|||
|
numberofvertices);
|
|||
|
floydwarshall.floydwarshall(adjacency_matrix);
|
|||
|
scan.close();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
|
|||
|
Enter the number of vertices
|
|||
|
6
|
|||
|
Enter the Weighted Matrix for the graph
|
|||
|
0 4 0 0 1 0
|
|||
|
0 0 1 0 2 0
|
|||
|
0 0 0 0 0 0
|
|||
|
0 0 0 0 0 0
|
|||
|
0 0 0 5 0 3
|
|||
|
0 0 0 0 0 0
|
|||
|
The Transitive Closure of the Graph (999 represents not reachable)
|
|||
|
1 2 3 4 5 6
|
|||
|
1 0 4 5 6 1 4
|
|||
|
2 999 0 1 7 2 5
|
|||
|
3 999 999 0 999 999 999
|
|||
|
4 999 999 999 0 999 999
|
|||
|
5 999 999 999 5 0 3
|
|||
|
6 999 999 999 999 999 0
|