programming-examples/java/Graph_Problems_Algorithms/Java Program to Construct an Expression Tree for an Infix Expression.java

287 lines
7.5 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a java program to construct an expression tree using infix expression and perform the infix, prefix and postfix traversal of the expression tree. The leaves of a binary expression tree are operands, such as constants or variable names, and the other nodes contain operators. These particular trees happen to be binary, because all of the operations are binary, and although this is the simplest case, it is possible for nodes to have more than two children. It is also possible for a node to have only one child, as is the case with the unary minus operator. An expression tree, T, can be evaluated by applying the operator at the root to the values obtained by recursively evaluating the left and right sub-trees.*/
//This is a java program to construct Expression Tree using Infix Expression
import java.io.*;
class Node
{
public char data;
public Node leftChild;
public Node rightChild;
public Node(char x)
{
data = x;
}
public void displayNode()
{
System.out.print(data);
}
}
class Stack1
{
private Node[] a;
private int top, m;
public Stack1(int max)
{
m = max;
a = new Node[m];
top = -1;
}
public void push(Node key)
{
a[++top] = key;
}
public Node pop()
{
return (a[top--]);
}
public boolean isEmpty()
{
return (top == -1);
}
}
class Stack2
{
private char[] a;
private int top, m;
public Stack2(int max)
{
m = max;
a = new char[m];
top = -1;
}
public void push(char key)
{
a[++top] = key;
}
public char pop()
{
return (a[top--]);
}
public boolean isEmpty()
{
return (top == -1);
}
}
class Conversion
{
private Stack2 s;
private String input;
private String output = "";
public Conversion(String str)
{
input = str;
s = new Stack2(str.length());
}
public String inToPost()
{
for (int i = 0; i < input.length(); i++)
{
char ch = input.charAt(i);
switch (ch)
{
case '+':
case '-':
gotOperator(ch, 1);
break;
case '*':
case '/':
gotOperator(ch, 2);
break;
case '(':
s.push(ch);
break;
case ')':
gotParenthesis();
break;
default:
output = output + ch;
}
}
while (!s.isEmpty())
output = output + s.pop();
return output;
}
private void gotOperator(char opThis, int prec1)
{
while (!s.isEmpty())
{
char opTop = s.pop();
if (opTop == '(')
{
s.push(opTop);
break;
}
else
{
int prec2;
if (opTop == '+' || opTop == '-')
prec2 = 1;
else
prec2 = 2;
if (prec2 < prec1)
{
s.push(opTop);
break;
}
else
output = output + opTop;
}
}
s.push(opThis);
}
private void gotParenthesis()
{
while (!s.isEmpty())
{
char ch = s.pop();
if (ch == '(')
break;
else
output = output + ch;
}
}
}
class Tree
{
private Node root;
public Tree()
{
root = null;
}
public void insert(String s)
{
Conversion c = new Conversion(s);
s = c.inToPost();
Stack1 stk = new Stack1(s.length());
s = s + "#";
int i = 0;
char symbol = s.charAt(i);
Node newNode;
while (symbol != '#')
{
if (symbol >= '0' && symbol <= '9' || symbol >= 'A'
&& symbol <= 'Z' || symbol >= 'a' && symbol <= 'z')
{
newNode = new Node(symbol);
stk.push(newNode);
}
else if (symbol == '+' || symbol == '-' || symbol == '/'
|| symbol == '*')
{
Node ptr1 = stk.pop();
Node ptr2 = stk.pop();
newNode = new Node(symbol);
newNode.leftChild = ptr2;
newNode.rightChild = ptr1;
stk.push(newNode);
}
symbol = s.charAt(++i);
}
root = stk.pop();
}
public void traverse(int type)
{
switch (type)
{
case 1:
System.out.print("Preorder Traversal:- ");
preOrder(root);
break;
case 2:
System.out.print("Inorder Traversal:- ");
inOrder(root);
break;
case 3:
System.out.print("Postorder Traversal:- ");
postOrder(root);
break;
default:
System.out.println("Invalid Choice");
}
}
private void preOrder(Node localRoot)
{
if (localRoot != null)
{
localRoot.displayNode();
preOrder(localRoot.leftChild);
preOrder(localRoot.rightChild);
}
}
private void inOrder(Node localRoot)
{
if (localRoot != null)
{
inOrder(localRoot.leftChild);
localRoot.displayNode();
inOrder(localRoot.rightChild);
}
}
private void postOrder(Node localRoot)
{
if (localRoot != null)
{
postOrder(localRoot.leftChild);
postOrder(localRoot.rightChild);
localRoot.displayNode();
}
}
}
public class Infix_Expression_Tree
{
public static void main(String args[]) throws IOException
{
String ch = "y";
DataInputStream inp = new DataInputStream(System.in);
while (ch.equals("y"))
{
Tree t1 = new Tree();
System.out.println("Enter the Expression");
String a = inp.readLine();
t1.insert(a);
t1.traverse(1);
System.out.println("");
t1.traverse(2);
System.out.println("");
t1.traverse(3);
System.out.println("");
System.out.print("Enter y to continue ");
ch = inp.readLine();
}
}
}
/*
Enter the Expression
A+B*C-D
Preorder Traversal:- -+A*BCD
Inorder Traversal:- A+B*C-D
Postorder Traversal:- ABC*+D-