155 lines
3.9 KiB
Java
155 lines
3.9 KiB
Java
|
import java.util.*;
|
||
|
|
||
|
public class Simplex {
|
||
|
|
||
|
// returns max c*x such that A*x <= b, x >= 0
|
||
|
public static Rational simplex(Rational[][] A, Rational[] b, Rational[] c, Rational[] x) {
|
||
|
int m = A.length;
|
||
|
int n = A[0].length + 1;
|
||
|
int[] index = new int[n + m];
|
||
|
for (int i = 0; i < n + m; i++) {
|
||
|
index[i] = i;
|
||
|
}
|
||
|
Rational[][] a = new Rational[m + 2][n + 1];
|
||
|
for (Rational[] a1 : a) {
|
||
|
Arrays.fill(a1, Rational.ZERO);
|
||
|
}
|
||
|
int L = m;
|
||
|
for (int i = 0; i < m; i++) {
|
||
|
for (int j = 0; j < n - 1; j++) {
|
||
|
a[i][j] = A[i][j].negate();
|
||
|
}
|
||
|
a[i][n - 1] = Rational.ONE;
|
||
|
a[i][n] = b[i];
|
||
|
if (a[L][n].compareTo(a[i][n]) > 0) {
|
||
|
L = i;
|
||
|
}
|
||
|
}
|
||
|
for (int j = 0; j < n - 1; j++) {
|
||
|
a[m][j] = c[j];
|
||
|
}
|
||
|
a[m + 1][n - 1] = Rational.ONE.negate();
|
||
|
for (int E = n - 1;;) {
|
||
|
if (L < m) {
|
||
|
int t = index[E];
|
||
|
index[E] = index[L + n];
|
||
|
index[L + n] = t;
|
||
|
a[L][E] = a[L][E].inverse();
|
||
|
for (int j = 0; j <= n; j++) {
|
||
|
if (j != E) {
|
||
|
a[L][j] = a[L][j].mul(a[L][E].negate());
|
||
|
}
|
||
|
}
|
||
|
for (int i = 0; i <= m + 1; i++) {
|
||
|
if (i != L) {
|
||
|
for (int j = 0; j <= n; j++) {
|
||
|
if (j != E) {
|
||
|
a[i][j] = a[i][j].add(a[L][j].mul(a[i][E]));
|
||
|
}
|
||
|
}
|
||
|
a[i][E] = a[i][E].mul(a[L][E]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
E = -1;
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
if (E < 0 || index[E] > index[j]) {
|
||
|
if (a[m + 1][j].signum() > 0 || a[m + 1][j].signum() == 0 && a[m][j].signum() > 0) {
|
||
|
E = j;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (E < 0) {
|
||
|
break;
|
||
|
}
|
||
|
L = -1;
|
||
|
for (int i = 0; i < m; i++) {
|
||
|
if (a[i][E].signum() < 0) {
|
||
|
Rational d;
|
||
|
if (L < 0 || (d = a[L][n].div(a[L][E]).sub(a[i][n].div(a[i][E]))).signum() < 0 || d.signum() == 0
|
||
|
&& index[L + n] > index[i + n]) {
|
||
|
L = i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (L < 0) {
|
||
|
return Rational.POSITIVE_INFINITY;
|
||
|
}
|
||
|
}
|
||
|
if (a[m + 1][n].signum() < 0) {
|
||
|
return null;
|
||
|
}
|
||
|
if (x != null) {
|
||
|
Arrays.fill(x, Rational.ZERO);
|
||
|
for (int i = 0; i < m; i++)
|
||
|
if (index[n + i] < n - 1)
|
||
|
x[index[n + i]] = a[i][n];
|
||
|
}
|
||
|
return a[m][n];
|
||
|
}
|
||
|
|
||
|
// Usage example
|
||
|
public static void main(String[] args) {
|
||
|
long[][] a = { { 4, -1 }, { 2, 1 }, { -5, 2 } };
|
||
|
long[] b = { 8, 10, 2 };
|
||
|
long[] c = { 1, 1 };
|
||
|
Rational[] x = new Rational[c.length];
|
||
|
Rational res = simplex(cnv(a), cnv(b), cnv(c), x);
|
||
|
System.out.println(new Rational(8).equals(res));
|
||
|
System.out.println(Arrays.toString(x));
|
||
|
|
||
|
a = new long[][] { { 3, 4, -3 }, { 5, -4, -3 }, { 7, 4, 11 } };
|
||
|
b = new long[] { 23, 10, 30 };
|
||
|
c = new long[] { -1, 1, 2 };
|
||
|
x = new Rational[c.length];
|
||
|
res = simplex(cnv(a), cnv(b), cnv(c), x);
|
||
|
System.out.println(new Rational(57, 8).equals(res));
|
||
|
System.out.println(Arrays.toString(x));
|
||
|
|
||
|
// no feasible non-negative solutions
|
||
|
a = new long[][] { { 4, -1 }, { 2, 1 }, { -5, 2 } };
|
||
|
b = new long[] { 8, -10, 2 };
|
||
|
c = new long[] { 1, 1 };
|
||
|
res = simplex(cnv(a), cnv(b), cnv(c), null);
|
||
|
System.out.println(null == res);
|
||
|
|
||
|
// unbounded problem
|
||
|
a = new long[][] { { -4, 1 }, { -2, -1 }, { -5, 2 } };
|
||
|
b = new long[] { -8, -10, 2 };
|
||
|
c = new long[] { 1, 1 };
|
||
|
res = simplex(cnv(a), cnv(b), cnv(c), null);
|
||
|
System.out.println(Rational.POSITIVE_INFINITY == res);
|
||
|
|
||
|
// no feasible solutions
|
||
|
a = new long[][] { { 1 }, { -1 } };
|
||
|
b = new long[] { 1, -2 };
|
||
|
c = new long[] { 0 };
|
||
|
res = simplex(cnv(a), cnv(b), cnv(c), null);
|
||
|
System.out.println(null == res);
|
||
|
|
||
|
// infinite number of solutions, but only one is returned
|
||
|
a = new long[][] { { 1, 1 } };
|
||
|
b = new long[] { 0 };
|
||
|
c = new long[] { 1, 1 };
|
||
|
x = new Rational[c.length];
|
||
|
res = simplex(cnv(a), cnv(b), cnv(c), x);
|
||
|
System.out.println(Arrays.toString(x));
|
||
|
}
|
||
|
|
||
|
static Rational[] cnv(long[] a) {
|
||
|
Rational[] res = new Rational[a.length];
|
||
|
for (int i = 0; i < a.length; i++) {
|
||
|
res[i] = new Rational(a[i]);
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
static Rational[][] cnv(long[][] a) {
|
||
|
Rational[][] res = new Rational[a.length][];
|
||
|
for (int i = 0; i < a.length; i++) {
|
||
|
res[i] = cnv(a[i]);
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
}
|