124 lines
2.8 KiB
Java
124 lines
2.8 KiB
Java
|
import java.util.*;
|
||
|
|
||
|
// https://en.wikipedia.org/wiki/Partition_(number_theory)
|
||
|
public class Partitions {
|
||
|
|
||
|
public static boolean nextPartition(List<Integer> p) {
|
||
|
int n = p.size();
|
||
|
if (n <= 1)
|
||
|
return false;
|
||
|
int s = p.remove(n - 1) - 1;
|
||
|
int i = n - 2;
|
||
|
while (i > 0 && p.get(i).equals(p.get(i - 1))) {
|
||
|
s += p.remove(i);
|
||
|
--i;
|
||
|
}
|
||
|
p.set(i, p.get(i) + 1);
|
||
|
while (s-- > 0) {
|
||
|
p.add(1);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public static List<Integer> partitionByNumber(int n, long number) {
|
||
|
List<Integer> p = new ArrayList<>();
|
||
|
for (int x = n; x > 0; ) {
|
||
|
int j = 1;
|
||
|
while (true) {
|
||
|
long cnt = partitionFunction(x)[x][j];
|
||
|
if (number < cnt)
|
||
|
break;
|
||
|
number -= cnt;
|
||
|
++j;
|
||
|
}
|
||
|
p.add(j);
|
||
|
x -= j;
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
public static long numberByPartition(List<Integer> p) {
|
||
|
long res = 0;
|
||
|
int sum = 0;
|
||
|
for (int x : p) {
|
||
|
sum += x;
|
||
|
}
|
||
|
for (int cur : p) {
|
||
|
for (int j = 0; j < cur; j++) {
|
||
|
res += partitionFunction(sum)[sum][j];
|
||
|
}
|
||
|
sum -= cur;
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
public static void generateIncreasingPartitions(int[] p, int left, int last, int pos) {
|
||
|
if (left == 0) {
|
||
|
for (int i = 0; i < pos; i++)
|
||
|
System.out.print(p[i] + " ");
|
||
|
System.out.println();
|
||
|
return;
|
||
|
}
|
||
|
for (p[pos] = last + 1; p[pos] <= left; p[pos]++)
|
||
|
generateIncreasingPartitions(p, left - p[pos], p[pos], pos + 1);
|
||
|
}
|
||
|
|
||
|
public static long countPartitions(int n) {
|
||
|
long[] p = new long[n + 1];
|
||
|
p[0] = 1;
|
||
|
for (int i = 1; i <= n; i++) {
|
||
|
for (int j = i; j <= n; j++) {
|
||
|
p[j] += p[j - i];
|
||
|
}
|
||
|
}
|
||
|
return p[n];
|
||
|
}
|
||
|
|
||
|
public static long[][] partitionFunction(int n) {
|
||
|
long[][] p = new long[n + 1][n + 1];
|
||
|
p[0][0] = 1;
|
||
|
for (int i = 1; i <= n; i++) {
|
||
|
for (int j = 1; j <= i; j++) {
|
||
|
p[i][j] = p[i - 1][j - 1] + p[i - j][j];
|
||
|
}
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
public static long[][] partitionFunction2(int n) {
|
||
|
long[][] p = new long[n + 1][n + 1];
|
||
|
p[0][0] = 1;
|
||
|
for (int i = 1; i <= n; i++) {
|
||
|
for (int j = 1; j <= i; j++) {
|
||
|
for (int k = 0; k <= j; k++) {
|
||
|
p[i][j] += p[i - j][k];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
// Usage example
|
||
|
public static void main(String[] args) {
|
||
|
System.out.println(7 == countPartitions(5));
|
||
|
System.out.println(627 == countPartitions(20));
|
||
|
System.out.println(5604 == countPartitions(30));
|
||
|
System.out.println(204226 == countPartitions(50));
|
||
|
System.out.println(190569292 == countPartitions(100));
|
||
|
|
||
|
List<Integer> p = new ArrayList<>();
|
||
|
Collections.addAll(p, 1, 1, 1, 1, 1);
|
||
|
do {
|
||
|
System.out.println(p);
|
||
|
} while (nextPartition(p));
|
||
|
|
||
|
int[] p1 = new int[8];
|
||
|
generateIncreasingPartitions(p1, p1.length, 0, 0);
|
||
|
|
||
|
List<Integer> list = partitionByNumber(5, 6);
|
||
|
System.out.println(list);
|
||
|
|
||
|
System.out.println(numberByPartition(list));
|
||
|
}
|
||
|
}
|