209 lines
6.9 KiB
Java
209 lines
6.9 KiB
Java
|
|
||
|
|
||
|
import edu.princeton.cs.introcs.In;
|
||
|
import edu.princeton.cs.introcs.StdOut;
|
||
|
|
||
|
/*************************************************************************
|
||
|
* Compilation: javac LazyPrimMST.java
|
||
|
* Execution: java LazyPrimMST filename.txt
|
||
|
* Dependencies: EdgeWeightedGraph.java Edge.java Queue.java
|
||
|
* MinPQ.java UF.java In.java StdOut.java
|
||
|
* Data files: http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
|
||
|
* http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
|
||
|
* http://algs4.cs.princeton.edu/43mst/largeEWG.txt
|
||
|
*
|
||
|
* Compute a minimum spanning forest using a lazy version of Prim's
|
||
|
* algorithm.
|
||
|
*
|
||
|
* % java LazyPrimMST tinyEWG.txt
|
||
|
* 0-7 0.16000
|
||
|
* 1-7 0.19000
|
||
|
* 0-2 0.26000
|
||
|
* 2-3 0.17000
|
||
|
* 5-7 0.28000
|
||
|
* 4-5 0.35000
|
||
|
* 6-2 0.40000
|
||
|
* 1.81000
|
||
|
*
|
||
|
* % java LazyPrimMST mediumEWG.txt
|
||
|
* 0-225 0.02383
|
||
|
* 49-225 0.03314
|
||
|
* 44-49 0.02107
|
||
|
* 44-204 0.01774
|
||
|
* 49-97 0.03121
|
||
|
* 202-204 0.04207
|
||
|
* 176-202 0.04299
|
||
|
* 176-191 0.02089
|
||
|
* 68-176 0.04396
|
||
|
* 58-68 0.04795
|
||
|
* 10.46351
|
||
|
*
|
||
|
* % java LazyPrimMST largeEWG.txt
|
||
|
* ...
|
||
|
* 647.66307
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/**
|
||
|
* The LazyPrimMST class represents a data type for computing a
|
||
|
* minimum spanning tree in an edge-weighted graph.
|
||
|
* The edge weights can be positive, zero, or negative and need not
|
||
|
* be distinct. If the graph is not connected, it computes a minimum
|
||
|
* spanning forest , which is the union of minimum spanning trees
|
||
|
* in each connected component. The weight() method returns the
|
||
|
* weight of a minimum spanning tree and the edges() method
|
||
|
* returns its edges.
|
||
|
*
|
||
|
* This implementation uses a lazy version of Prim's algorithm
|
||
|
* with a binary heap of edges.
|
||
|
* The constructor takes time proportional to E log E
|
||
|
* and extra space (not including the graph) proportional to E ,
|
||
|
* where V is the number of vertices and E is the number of edges.
|
||
|
* Afterwards, the weight() method takes constant time
|
||
|
* and the edges() method takes time proportional to V .
|
||
|
*
|
||
|
* For additional documentation, see <a href="/algs4/44sp">Section 4.4</a> of
|
||
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
||
|
* For alternate implementations, see {@link PrimMST}, {@link KruskalMST},
|
||
|
* and {@link BoruvkaMST}.
|
||
|
*
|
||
|
* @author Robert Sedgewick
|
||
|
* @author Kevin Wayne
|
||
|
*/
|
||
|
public class LazyPrimMST {
|
||
|
private double weight; // total weight of MST
|
||
|
private Queue<Edge> mst; // edges in the MST
|
||
|
private boolean[] marked; // marked[v] = true if v on tree
|
||
|
private MinPQ<Edge> pq; // edges with one endpoint in tree
|
||
|
|
||
|
/**
|
||
|
* Compute a minimum spanning tree (or forest) of an edge-weighted graph.
|
||
|
* @param G the edge-weighted graph
|
||
|
*/
|
||
|
public LazyPrimMST(EdgeWeightedGraph G) {
|
||
|
mst = new Queue<Edge>();
|
||
|
pq = new MinPQ<Edge>();
|
||
|
marked = new boolean[G.V()];
|
||
|
for (int v = 0; v < G.V(); v++) // run Prim from all vertices to
|
||
|
if (!marked[v]) prim(G, v); // get a minimum spanning forest
|
||
|
|
||
|
// check optimality conditions
|
||
|
assert check(G);
|
||
|
}
|
||
|
|
||
|
// run Prim's algorithm
|
||
|
private void prim(EdgeWeightedGraph G, int s) {
|
||
|
scan(G, s);
|
||
|
while (!pq.isEmpty()) { // better to stop when mst has V-1 edges
|
||
|
Edge e = pq.delMin(); // smallest edge on pq
|
||
|
int v = e.either(), w = e.other(v); // two endpoints
|
||
|
assert marked[v] || marked[w];
|
||
|
if (marked[v] && marked[w]) continue; // lazy, both v and w already scanned
|
||
|
mst.enqueue(e); // add e to MST
|
||
|
weight += e.weight();
|
||
|
if (!marked[v]) scan(G, v); // v becomes part of tree
|
||
|
if (!marked[w]) scan(G, w); // w becomes part of tree
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// add all edges e incident to v onto pq if the other endpoint has not yet been scanned
|
||
|
private void scan(EdgeWeightedGraph G, int v) {
|
||
|
assert !marked[v];
|
||
|
marked[v] = true;
|
||
|
for (Edge e : G.adj(v))
|
||
|
if (!marked[e.other(v)]) pq.insert(e);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the edges in a minimum spanning tree (or forest).
|
||
|
* @return the edges in a minimum spanning tree (or forest) as
|
||
|
* an iterable of edges
|
||
|
*/
|
||
|
public Iterable<Edge> edges() {
|
||
|
return mst;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the sum of the edge weights in a minimum spanning tree (or forest).
|
||
|
* @return the sum of the edge weights in a minimum spanning tree (or forest)
|
||
|
*/
|
||
|
public double weight() {
|
||
|
return weight;
|
||
|
}
|
||
|
|
||
|
// check optimality conditions (takes time proportional to E V lg* V)
|
||
|
private boolean check(EdgeWeightedGraph G) {
|
||
|
|
||
|
// check weight
|
||
|
double totalWeight = 0.0;
|
||
|
for (Edge e : edges()) {
|
||
|
totalWeight += e.weight();
|
||
|
}
|
||
|
double EPSILON = 1E-12;
|
||
|
if (Math.abs(totalWeight - weight()) > EPSILON) {
|
||
|
System.err.printf("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight());
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// check that it is acyclic
|
||
|
UF uf = new UF(G.V());
|
||
|
for (Edge e : edges()) {
|
||
|
int v = e.either(), w = e.other(v);
|
||
|
if (uf.connected(v, w)) {
|
||
|
System.err.println("Not a forest");
|
||
|
return false;
|
||
|
}
|
||
|
uf.union(v, w);
|
||
|
}
|
||
|
|
||
|
// check that it is a spanning forest
|
||
|
for (Edge e : G.edges()) {
|
||
|
int v = e.either(), w = e.other(v);
|
||
|
if (!uf.connected(v, w)) {
|
||
|
System.err.println("Not a spanning forest");
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// check that it is a minimal spanning forest (cut optimality conditions)
|
||
|
for (Edge e : edges()) {
|
||
|
|
||
|
// all edges in MST except e
|
||
|
uf = new UF(G.V());
|
||
|
for (Edge f : mst) {
|
||
|
int x = f.either(), y = f.other(x);
|
||
|
if (f != e) uf.union(x, y);
|
||
|
}
|
||
|
|
||
|
// check that e is min weight edge in crossing cut
|
||
|
for (Edge f : G.edges()) {
|
||
|
int x = f.either(), y = f.other(x);
|
||
|
if (!uf.connected(x, y)) {
|
||
|
if (f.weight() < e.weight()) {
|
||
|
System.err.println("Edge " + f + " violates cut optimality conditions");
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Unit tests the LazyPrimMST data type.
|
||
|
*/
|
||
|
public static void main(String[] args) {
|
||
|
In in = new In(args[0]);
|
||
|
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
|
||
|
LazyPrimMST mst = new LazyPrimMST(G);
|
||
|
for (Edge e : mst.edges()) {
|
||
|
StdOut.println(e);
|
||
|
}
|
||
|
StdOut.printf("%.5f\n", mst.weight());
|
||
|
}
|
||
|
|
||
|
}
|