programming-examples/java/Computational_Geometry_Problems/Java Program to Implement Jarvis Algorithm.java

101 lines
2.6 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a Java Program to Implement Jarvis Algorithm. Jarvis algorithm or the gift wrapping algorithm is an algorithm for computing the convex hull of a given set of points.*/
/**
** Java Program to Implement Jarvis Algorithm
**/
import java.util.Scanner;
import java.util.Arrays;
/** Class point **/
class Point
{
int x, y;
}
/** Class Jarvis **/
public class Jarvis
{
private boolean CCW(Point p, Point q, Point r)
{
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
if (val >= 0)
return false;
return true;
}
public void convexHull(Point[] points)
{
int n = points.length;
/** if less than 3 points return **/
if (n < 3)
return;
int[] next = new int[n];
Arrays.fill(next, -1);
/** find the leftmost point **/
int leftMost = 0;
for (int i = 1; i < n; i++)
if (points[i].x < points[leftMost].x)
leftMost = i;
int p = leftMost, q;
/** iterate till p becomes leftMost **/
do
{
/** wrapping **/
q = (p + 1) % n;
for (int i = 0; i < n; i++)
if (CCW(points[p], points[i], points[q]))
q = i;
next[p] = q;
p = q;
}
while (p != leftMost);
/** Display result **/
display(points, next);
}
public void display(Point[] points, int[] next)
{
System.out.println("\nConvex Hull points : ");
for (int i = 0; i < next.length; i++)
if (next[i] != -1)
System.out.println("("+ points[i].x +", "+ points[i].y +")");
}
/** Main function **/
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Jarvis Algorithm Test\n");
/** Make an object of Jarvis class **/
Jarvis j = new Jarvis();
System.out.println("Enter number of points n :");
int n = scan.nextInt();
Point[] points = new Point[n];
System.out.println("Enter "+ n +" x, y cordinates");
for (int i = 0; i < n; i++)
{
points[i] = new Point();
points[i].x = scan.nextInt();
points[i].y = scan.nextInt();
}
j.convexHull(points);
}
}
/*
Enter number of points n :
8
Enter 8 x, y cordinates
0 3
4 2
3 5
5 3
3 0
1 1
1 2
2 2
Convex Hull points :
(0, 3)
(3, 5)
(5, 3)
(3, 0)
(1, 1)