programming-examples/java/Computational_Geometry_Problems/Java Program to Find Nearest Neighbor for Dynamic Data Set.java

301 lines
8.3 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a Java Program to implement 2D KD Tree and find the nearest neighbor for dynamic input set. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.*/
//This is a java program to find nearest neighbor for dynamic data set
import java.io.IOException;
import java.util.Scanner;
class KDN
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KDN Parent;
KDN Left;
KDN Right;
public KDN(double[] x0, int axis0)
{
x = new double[2];
axis = axis0;
for (int k = 0; k < 2; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KDN FindParent(double[] x0)
{
KDN parent = null;
KDN next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KDN Insert(double[] p)
{
x = new double[2];
KDN parent = FindParent(p);
if (equal(p, parent.x, 2) == true)
return null;
KDN newNode = new KDN(p, parent.axis + 1 < 2 ? parent.axis + 1 : 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
}
else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KDTreeDynamic
{
KDN Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KDN nearest_neighbour;
int KD_id;
int nList;
KDN CheckedNodes[];
int checked_nodes;
KDN List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KDTreeDynamic(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KDN[i];
CheckedNodes = new KDN[i];
max_boundary = new boolean[2];
min_boundary = new boolean[2];
x_min = new double[2];
x_max = new double[2];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KDN(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
}
else
{
KDN pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KDN find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KDN parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 2);
;
if (parent.equal(x, parent.x, 2) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KDN node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
}
else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KDN node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 2; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
}
else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KDN search_parent(KDN parent, double[] x)
{
for (int k = 0; k < 2; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KDN search_root = parent;
while (parent != null && (n_boundary != 2 * 2))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
}
public class Dynamic_Nearest
{
public static void main(String args[]) throws IOException
{
int numpoints = 10;
Scanner sc = new Scanner(System.in);
KDTreeDynamic kdt = new KDTreeDynamic(numpoints);
double x[] = new double[2];
System.out.println("Enter the first 10 data set : <x> <y>");
for (int i = 0; i < numpoints; i++)
{
x[0] = sc.nextDouble();
x[1] = sc.nextDouble();
kdt.add(x);
}
System.out.println("Enter the co-ordinates of the point: <x> <y>");
double sx = sc.nextDouble();
double sy = sc.nextDouble();
double s[] = { sx, sy };
KDN kdn = kdt.find_nearest(s);
System.out.println("The nearest neighbor for the static data set is: ");
System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")");
sc.close();
}
}
/*
Enter the first 10 data set :
1.2 3.3
2.3 3.4
4.5 5.6
6.7 7.8
8.9 9.0
10.1 11.3
15.6 19.4
20.5 25.4
52.8 65.3
62.6 56.3
Enter the co-ordinates of the point: <x> <y>
60 34.2
The nearest neighbor for the static data set is:
(62.6 , 56.3)