85 lines
2.5 KiB
C++
85 lines
2.5 KiB
C++
|
/*This is a C++ Program to implement Jarvis March to find convex hull. The idea of Jarvis’s Algorithm is simple, we start from the leftmost point (or point with minimum x coordinate value) and we keep wrapping points in counterclockwise direction.*/
|
|||
|
|
|||
|
// A C++ program to find convex hull of a set of points
|
|||
|
// Refer http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
|
|||
|
// for explanation of orientation()
|
|||
|
#include <iostream>
|
|||
|
using namespace std;
|
|||
|
|
|||
|
// Define Infinite (Using INT_MAX caused overflow problems)
|
|||
|
#define INF 10000
|
|||
|
|
|||
|
struct Point
|
|||
|
{
|
|||
|
int x;
|
|||
|
int y;
|
|||
|
};
|
|||
|
|
|||
|
// To find orientation of ordered triplet (p, q, r).
|
|||
|
// The function returns following values
|
|||
|
// 0 --> p, q and r are colinear
|
|||
|
// 1 --> Clockwise
|
|||
|
// 2 --> Counterclockwise
|
|||
|
int orientation(Point p, Point q, Point r)
|
|||
|
{
|
|||
|
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
|
|||
|
if (val == 0)
|
|||
|
return 0; // colinear
|
|||
|
return (val > 0) ? 1 : 2; // clock or counterclock wise
|
|||
|
}
|
|||
|
|
|||
|
// Prints convex hull of a set of n points.
|
|||
|
void convexHull(Point points[], int n)
|
|||
|
{
|
|||
|
// There must be at least 3 points
|
|||
|
if (n < 3)
|
|||
|
return;
|
|||
|
// Initialize Result
|
|||
|
int next[n];
|
|||
|
for (int i = 0; i < n; i++)
|
|||
|
next[i] = -1;
|
|||
|
// Find the leftmost point
|
|||
|
int l = 0;
|
|||
|
for (int i = 1; i < n; i++)
|
|||
|
if (points[i].x < points[l].x)
|
|||
|
l = i;
|
|||
|
// Start from leftmost point, keep moving counterclockwise
|
|||
|
// until reach the start point again
|
|||
|
int p = l, q;
|
|||
|
do
|
|||
|
{
|
|||
|
// Search for a point 'q' such that orientation(p, i, q) is
|
|||
|
// counterclockwise for all points 'i'
|
|||
|
q = (p + 1) % n;
|
|||
|
for (int i = 0; i < n; i++)
|
|||
|
if (orientation(points[p], points[i], points[q]) == 2)
|
|||
|
q = i;
|
|||
|
next[p] = q; // Add q to result as a next point of p
|
|||
|
p = q; // Set p as q for next iteration
|
|||
|
}
|
|||
|
while (p != l);
|
|||
|
// Print Result
|
|||
|
for (int i = 0; i < n; i++)
|
|||
|
{
|
|||
|
if (next[i] != -1)
|
|||
|
cout << "(" << points[i].x << ", " << points[i].y << ")\n";
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Driver program to test above functions
|
|||
|
int main()
|
|||
|
{
|
|||
|
Point points[] = { { 0, 3 }, { 2, 2 }, { 1, 1 }, { 2, 1 }, { 3, 0 },
|
|||
|
{ 0, 0 }, { 3, 3 }
|
|||
|
};
|
|||
|
cout << "The points in the convex hull are: ";
|
|||
|
int n = sizeof(points) / sizeof(points[0]);
|
|||
|
convexHull(points, n);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
The points in the convex hull are: (0, 3)
|
|||
|
(3, 0)
|
|||
|
(0, 0)
|
|||
|
(3, 3)
|