programming-examples/c++/11_Numerical_Problems/C++ Program to Find Path Between Two Nodes in a Graph.cpp

109 lines
3.0 KiB
C++
Raw Normal View History

2019-11-15 12:59:38 +01:00
#include <iostream>
#include <list>
using namespace std;
// This class represents a directed graph using adjacency list representation
class Graph
{
int V; // No. of vertices
list<int> *adj; // Pointer to an array containing adjacency lists
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // function to add an edge to graph
bool isReachable(int s, int d); // returns true if there is a path from s to d
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int> [V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to vs list.
}
// A BFS based function to check whether d is reachable from s.
bool Graph::isReachable(int s, int d)
{
// Base case
if (s == d)
return true;
// Mark all the vertices as not visited
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Create a queue for BFS
list<int> queue;
// Mark the current node as visited and enqueue it
visited[s] = true;
queue.push_back(s);
// it will be used to get all adjacent vertices of a vertex
list<int>::iterator i;
while (!queue.empty())
{
// Dequeue a vertex from queue and print it
s = queue.front();
queue.pop_front();
// Get all adjacent vertices of the dequeued vertex s
// If a adjacent has not been visited, then mark it visited
// and enqueue it
for (i = adj[s].begin(); i != adj[s].end(); ++i)
{
// If this adjacent node is the destination node, then return true
if (*i == d)
return true;
// Else, continue to do BFS
if (!visited[*i])
{
visited[*i] = true;
queue.push_back(*i);
}
}
}
return false;
}
// Driver program to test methods of graph class
int main()
{
// Create a graph given in the above diagram
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
cout << "Enter the source and destination vertices: (0-3)";
int u, v;
cin >> u >> v;
if (g.isReachable(u, v))
cout << "\nThere is a path from " << u << " to " << v;
else
cout << "\nThere is no path from " << u << " to " << v;
int temp;
temp = u;
u = v;
v = temp;
if (g.isReachable(u, v))
cout << "\nThere is a path from " << u << " to " << v;
else
cout << "\nThere is no path from " << u << " to " << v;
return 0;
}
/*
Enter the source and destination vertices: (0-3)
1 3
There is a path from 1 to 3
There is no path from 3 to 1
Enter the source and destination vertices: (0-3)
2 3
There is a path from 2 to 3
There is no path from 3 to 2